Croasdale Beck in February

Ennerdale_Feb19

My latest trip to the west Cumbria coincided with the period of freakily warm weather that marked the end of February (in marked contrast to a year previously when we were in the midst of the “Beast from the East”).   It felt like spring had come early although the skeletal outlines of leafless trees were incongruous against the backdrop of blue skies and, despite feeling the warmth of the sun on our faces as we worked, the water still had a wintery chill when the time came to plunge in my arm.

There were thick growths of algae on the bed of Croasdale Beck: a quick check with my microscope later showed this to be mostly Odontidium mesodonand Gomphonema parvulumand this piqued my curiosity to see how different species responded to the fluctuations in biomass that we observe in the streams in this region. I’ve talked about this before (see “A tale of two diatoms …”), suggesting that Platessa oblongellatended to dominate when biofilms were thin whilst Odontidium mesodon preferred thicker biofilms.  That was almost two years ago and I now have more data with which to test that hypothesis, and also to see if any other common taxa had an equally strong preference for particular states.

Croasdale_cobble_Feb19

A cobble from the bed of Croasdale Beck in February 2019 showing a brown biofilm (approx. 1.7 micrograms per square centimetre) dominated by Gomphonema parvulumand Odontidium mesodon.   The photograph at the top of the post shows Ennerdale Water photographed on the same day.

I should also be clear that, in Croasdale Beck especially, diatoms are the main algal component of the biofilm, so they are not so much responding to a particular state of the biofilm as actively contributing biomass to create that state.  The other photosynthetic organism that is obvious to the naked eye in this part of Croasdale Beck is the cyanobacterium Chamaesiphon fuscus (see “A bigger splash …”) but this forms crusts on stone surfaces rather than contributing to the superstructure of the biofilm itself. We do find other filamentous algae, but intermittently and in smaller quantities.

We’ll look at Platessa oblongellafirst, bearing in mind that this was shown to be a mixture of two species about halfway through our study (see “Small details in the big picture …”).   The graph below, therefore, does not differentiate between these two species although, from my own observations, I have no reason to believe that they behave differently.   What I have done in these graphs is to divide the biomass measurements and the percent representation of these taxa in each sample into three categories: low, middle and high.   In each case, “low” represents the bottom 25 per cent of measurements, “high” represents the top 25 per cent of measurements and “middle” represents all the rest. The left-hand graph shows biomass (as chlorophyll a concentration) as a function of the relative abundance of the diatom whilst the right-hand graph shows the opposite: the relative abundance of the diatom as a function of the biomass.  These graphs bear out what I suggested in my earlier post: that Platessa oblongella(and P. saxonica) are species whose highest relative abundances occur when the biofilm is thin.  So far, so good.

P.oblongella

Relationship between relative abundance of Platessa oblongella (including P. saxonica) and biomass in Croasdale Beck, Cumbria.  a. shows biomass (as chlorophyll a) as a function of the relative abundance of the two species (Kruskal-Wallis test, p = 0.047) whilst b. shows the relative abundance as a function of biomass (p = 0.057).

My second prediction in my earlier post was that Odontidium mesodonpreferred moderate or thick biofilms; however, whilst there is a clear trend in the data, differences between low, middle and high values of neither biomass nor relative abundance are significant.   The explanation may lay in the strong seasonality that O. mesodondisplays, thriving in spring but less common at other times of year (see “More about Platessa oblongella and Odontidium mesodon”).  However, there are no strong seasonal patterns in biomass in Croasdale Beck, and this disjunction introduces enough noise into the relationship to render it not significant.

O.mesodon

Relationship between relative abundance of Odontidium mesodon and biomass in Croasdale Beck, Cumbria.  a. shows biomass (as chlorophyll a) as a function of the relative abundance of O. mesodon (Kruskal-Wallis test, p = 0.568) whilst b. shows the relative abundance as a function of biomass (p = 0.060).

I then tried looking at the relationship between relative abundance and biomass for a few other common taxa but with mixed results.   None of Achnanthidium minutissimum, Gomphonema parvulum complex or Fragilaria pectinalis showed any clear relationship; however, when I looked at Fragilaria gracilis, a different pattern emerged, with a significant relationship between the quantity of biomass and the proportion of this species in the sample.  That, too, is not a great surprise as I often see clusters of Fragilaria gracilis cells growing epiphytically on filamentous algae within the biofilm.  Whilst Platessa oblongella, which sits flat on the stone surface, seems to be a species that thrives when the biofilm is thin, so Fragilaira gracilisis favoured by a more complex three-dimensional structure, where it can piggy-back on other algae to exploit the light.   I suspect, however, that in a stream such as Croasdale Beck, where the substratum is very mobile, Fragilaira gracilis will also be one of the first casualties of a scouring spate which will, in turn, open up the canopy allowing Platessa oblongella back.   Even though my results for Odontidium mesodonare not significant, I still think it plays a part in this sequence, occupying the intermediate condition when some biomass has accumulated.  It looks to me as if it also likes cooler conditions which then complicates interpretation of my results.

Indeed, I am being rather selective in the results that I have included here.  Three of the six species I investigated showed no response and one of the three that I did include showed a trend rather than a statistically-convincing effect.  I suspect that the situation will rarely be as simple as I have shown for Platessa oblongella and Fragilaira gracilis.  Nonetheless, there is enough here to make me want to scratch a little more and try to understand this topic better.

F.gracilis

Relationship between relative abundance of Fragilaria gracilis and biomass in Croasdale Beck, Cumbria.  a. shows biomass (as chlorophyll a) as a function of the relative abundance of F.gracilis (Kruskal-Wallis test, p = 0.010) whilst b. shows the relative abundance as a function of biomass (p = 0.036).

Croasdale_Beck_Feb19

Croasdale Beck, photographed in February 2019. 

Advertisements

One thought on “Croasdale Beck in February

  1. Pingback: How to make an ecosystem (2) – microscopesandmonsters

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Google photo

You are commenting using your Google account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s

This site uses Akismet to reduce spam. Learn how your comment data is processed.