Diatoms from the Troodos mountains

Troodos_snowscape_Apr19

Back in April, I wrote two posts about the algae from a stream draining a chromite mine in the Troodos mountains in Cyprus (see “Survival of the fittest (1)” and “Survival of the fittest (2)”).  I also planned to write a post about the diatoms growing in the stream but the slide I prepared has been sitting on my desk over the summer whilst I was distracted by other things.  However, I have just started looking at some samples from metal-enriched streams in the northern Pennines and, curious to see whether a Cypriot chromite mine had similar effects, I blew the dust off the slide and slipped it under my microscope.

The principal effect of toxic pollution is to reduce the number of species found and, in this respect, my sample from the outflow of the Hadjipavlou mine outflow was true to form, containing just eight species.  The most abundant of these was Meridion circulare, accounting for one in four of all the cells.  What is more, many of the cells were visibly distorted (see images a., c. and d., in particular, in the plate below).  This is quite a common phenomenon in metal-polluted streams (see “A twist in the tale”) though I have not seen it quite so obviously in Meridion circulare before. My own pet theory is that one of the enzymes involved in laying down the silica cell wall has a metal co-factor that is displaced by heavy metals.

Meridion_circulare_Hadjipavlou_Apr19

Meridion circulare from thepebbles from the stream draining Hadjipavlou chromite mine in the Troodos mountains, Cyprus, March 2019.  Scale bar: 10 micrometres ( = 1/100th of a millimetre).   The photograph at the top of the post shows snow on the Troodos mountains near the mine.

The only other diatom that was at all common in the sample was Hantzschia amphioxys, which also occurred alongside a smaller population of Hantzschia abundans.  I’ve not come across Hantzschia in metal-enriched streams before: it is a species that is most often associated with habitats that are not permanently submerged.  That may be the case at Hadjipavlou but the water that flows from mines comes from groundwater rather than rainfall so would not be subject to the strong seasonal variations that we associate with Mediterranean streams.  It is hard to draw a firm conclusion from a single visit.   Unlike Meridion circulare, however, neither population of Hantzschia showed any obvious distortion, perhaps due to the Hantzschia cells being more heavily silicified than those of Meridion circulare.

The extent to which cellular distortions are obvious does vary between species, as can be seen in “A twist in the tale …”  which compared three different representatives of the same genus in a metal-polluted stream.  I chose the word “obvious” with care as I do think that these phenomena are more easily seen in long thin cells than in shorter ones.  In the same Pennine streams where distorted Fragilaria are common, for example, I can also see distorted cells of smaller diatoms such as Achnanthidium minutissimum.  But you need a keen eye to spot these reliably.   Some other people have used fluorescent stains to look at other cellular irregularities, such as the position of the nucleus and damage to the nuclear membrane, but these require specialist approaches whereas distortions to cell outlines can be spotted from a standard analysis.

Hantzschia_spp_Hajipavlou_Apr19

Hantzschia abundans (k., l.) and Hantzschia amphioxys (m. – p.) in the from the stream draining Hadjipavlou chromite mine in the Troodos mountains, Cyprus, March 2019.  Scale bar: 10 micrometres ( = 1/100th of a millimetre). 

A few years ago I was involved in a study of diatoms from streams in Cyprus and I dug out some of these data in order to put the Hadjipavlou sample into context.  One immediate surprise was that many of the “reference” (i.e. pristine or near-pristine) samples in that survey also had relatively low diversity.   The 45 samples in this subset had, on average, nine species, and a mean Shannon diversity index of 1.7, compared to eight species and a Shannon diversity index of 1.42 for the Hadjipavlou sample.   I’ve never been a fan of diversity indices as measures of ecological quality (see “Baffled by the benthos (2) and links therein”) although I suspect that average diversity at Hadjipavlou measured over a period of time will always be low whereas average diversity at unimpacted sites is more likely to fluctuate. Equally, low diversity coupled with a second strand of evidence, such as distorted valves, is a useful sign to an ecologist that something untoward is happening.

diversity_indices

Number of taxa (left) and Shannon diversity (right) recorded in 45 samples from “reference” sites (i.e. minimal evidence of anthropogenic alteration) in Cyprus.  The arrows indicate the location of the Hadjipavlou stream within this dataset. 

The irony of writing about a heavily-polluted stream in the Troodos mountains is that the geological conditions which created the metal-rich veins hereabouts also create conditions for many plants endemic to Cyprus.   The serpentine and other ultramafic rocks create metal-rich soils within which few plants can survive (more about these here. I suspect that few of the plant enthusiasts drawn to Cyprus will ever cast more than a cursory glance at the green flocs adorning the abandoned mines of the Troodos mountains.

References

Licursi, M., & Gómez, N. (2013). Short-term toxicity of hexavalent-chromium to epipsammic diatoms of a microtidal estuary (Río de la Plata): Responses from the individual cell to the community structure. Aquatic Toxicology 134-135: 82-91.  https://doi.org/10.1016/j.aquatox.2013.03.007

The devil lies in the detail …

Our latest ring test* slide took us on a vicarious journey to the beautiful River Don in Aberdeenshire.  Maybe because I have been doing this job for so long, but the quality of the landscape was clear to me as I peered through my microscope 500 kilometres away: the range of diatoms that I could see would not have thrived anywhere with more than the lightest touch from humankind.

One of the clues for me lay in some of the smallest diatoms on the slide.   It took some discussion amongst my fellow experts, but we eventually came up with a list of five different species of Achnanthidium (all illustrated below) which, together, constituted about a third of all the diatoms on the slide (admittedly, because they are small, they constitute rather less than a third of the total volume of diatoms, but that is another story ….).   The mere presence of several Achnanthidium species is, in my experience, usually a sign of high habitat quality (see “Baffled by the benthos (2)”) but unravelling the identities of the different species with a light microscope is challenging.

Achnanthidium-minutissimum-Medwin_WaterAchnanthidium minutissimum from Medwin Water, Scotland. Photographs from the Diatom Flora of Britain and Ireland by Ingrid Jüttner.  Scale bar: 10 micrometres (= 1/100thof a millimetre). 

Achnanthidium_pyrenaicum_Towie

Achnanthidium pyrenaicum from the River Don, Towie, Aberdeenshire.  Photographs by Lydia King.  Scale bar: 10 micrometres (= 1/100thof a millimetre). 

The genus Achnanthidium is a good example of the delicate co-existence between “identification” and “taxonomy” in the world of diatoms.   Individuals from this genus are usually small so anyone using a light microscope for routine analyses will be working right at the optical limits of their equipment whilst anyone with a serious interest in taxonomy will depend upon a scanning electron microscope for the insights needed for critical differentiation between species.

This divergence between the working methods of “identifiers” and “taxonomists” means that it is rarely possible to name every individual of Achnanthidium with complete confidence.  The ones that present clearly in valve view (i.e. face-up) can mostly be assigned to a species based on features we can see with a light microscope, but it is not always straightforward for those seen in girdle view (i.e. on their side) or which are partly obscured by other diatoms or extraneous matter on the slide.   In this example from the River Don, we also noticed that smaller individuals of A. gracillimum lost their characteristic rostrate/sub-capitate ends and were, as a result, not easy to differentiate from A. pyrenaicum.

Achnanthidium_gracillium_Towie_Water

Achnanthidium gracillimum from the River Don, Towie, Aberdeenshire.  Photographs by Lydia King.   Scale bar: 10 micrometres (= 1/100thof a millimetre). 

What continues to mystify me is why so many closely-related species can live in such close proximity. It is Achnanthidium that prompt this question here, but other genera display similar tendencies (see “When is a diatom like a London bus?”).  And this immediately generates another question: why are more people not asking this question of diatoms and, indeed, microscopic algae in general?

The answer to that question falls into two parts. The first is that understanding the precise ecological requirements of microscopic algae is not a trivial task, and assumes that you are able to get several closely-related species to live in culture (which, itself, assumes you know the precise ecological requirements of each … you see the problem?).   There is, as a result, a tendency to avoid experimental approaches and, instead, look for how species associate with likely environmental variables in datasets collected from sites exhibiting strong gradients of conditions.   However, this assumes that the forces that drive the differentiation between species work at the same scale at which we sample (see “Our patchwork heritage …” for more on this).

Underlying this, however, is a deeply-held belief, dating back at least forty years, that the niches of freshwater diatoms are determined primarily by the chemistry of the overlying water.   This is a dogma that has served us well when using diatoms for understanding the effects of environmental pollution but which is, ultimately, a limitation when trying to explain why we found five separate Achnanthidium species in a single sample, all exposed to the same stream water.

Achnanthidium_lineare_&_affine_Towie

Achnanthidium lineare (first three images from the left) and A. affine (two images on the right) from River Don, Towie, Aberdeenshire.  Photographs by Lydia King.  Scale bar: 10 micrometres (= 1/100thof a millimetre). 

I will go one step further: this dogma is so deeply held that referees rarely challenge the weak evidence that is produced to demonstrate different responses to environmental conditions between closely-related species.  There are certainly variations in environmental preferences between Achnanthidium species, but these are best expressed as trends rather than unambiguous differences and I have never seen such trends subject to rigorous statistical testing.

I blame better microscopes: greater magnification and resolution has revealed such a baffling amount of diversity that all the energy of bright diatomists is absorbed unravelling this rather than trying to explain what it all means (see “The meaning of … nothing”).  If we were bumbling along with the quality of equipment that Hustedt depended upon, then maybe we would be cheerfully lumping all these forms together and focussing on functional ecology instead.   Maybe.

* see “Reaching a half century” for more about the ring test scheme

Follow the data, stupid …

A perennial problem with ecology is that it is a discipline that is far better at describing problems than it is at solving them. The Water Framework Directive (WFD) encapsulates this: after nineteen years, we have a pretty good idea of the condition of Europe’s waters but have made very little progress in restoring the half that do not yet achieve good ecological status.

The reason for this is, I suspect, because describing the problem is a task that lies squarely within the remit of a scientist whilst finding solutions requires interactions that go beyond the boundaries of science, encountering vested interests along the way.   The agricultural sector’s enthusiasm for the environment is tempered by their desire to maximise yield and earn a living from the land, politicians are wary of regulations that may deter business or raise prices for the consumer and all of us are too wedded to the luxuries that the modern world offers.

The WFD can be seen as an embodiment of the social contract, articulated by philosophers such as Thomas Hobbes whereby individuals forego some rights in order to transcend the state of nature (“… nasty, brutish and short.”) and give us access to the benefits of an ordered society.  In this case, we all consent to forego some freedoms in return for a share in the benefits that a healthy aquatic environment will bring to all of us.   “Freedom” might seem like a weighty word in this context but anyone who has watched their sewerage charges creep steadily upwards over the past twenty years should recognise this as the price we pay for the freedom to flush away life’s less desirable by-products.

The problem is defining the point at which we hand over our natural rights to a higher authority.   We understand this when driving: an urban speed limit of 30 miles per hour reflects the point at which the risk we pose to other road users are deemed societally unacceptable and our right to drive as fast as we wish has to be curtailed.  If we can translate that principle into environmental governance then we can set “speed limits” for the major pressures that impact on the aquatic environment.   How do we get from an ecologist’s understanding of a “healthy” river (“good ecological status”, in WFD parlance) to the “speed limit” for nutrients, widely recognised as one of the major pressures affecting both freshwater and marine systems?

That’s been the focus of some work I’ve been doing under the auspices of the European Commission’s Joint Research Centre, one strand of which has just been published in Science of the Total Environment.  This paper looked at the threshold concentrations for nutrients (phosphorus and nitrogen) used by EU countries, noting the very wide range of values chosen as the national “speed limit”.   The situation is complicated because, just as is the case for roads, different types of rivers require different limits and we had to look for variation between countries amidst an array of variation within countries.   What emerged, however, was a clear relationship between the threshold values and the method used to set the standard.  Those that had applied statistical or modelling techniques to national data generally had tighter thresholds than those that relied upon “expert judgement”.  I’ve included the two figures from this paper that make this point.

Poikane_et_al_2019_Fig7

Range of good/moderate lake phosphorus (a) and nitrogen (b) threshold values grouped by method used to determine the value. Different letters indicate groups that are statistically different (p ≤ 0.05).   Fig. 7 from Poikane et al. (2019).

“Expert judgement” is one of those slippery terms that often creeps into official reports.   There needs to be space within a decision-making process for an experienced professional to see through the limitations of available evidence and present a reasoned alternative.  However, “expert judgement” too often becomes a shorthand for cutting corners and, in this case, grabbing numbers from the published literature that seem vaguely plausible.  There is also a darker side because, having unhitched decision-making from the evidence, “expert judgement” can become a euphemism for the “art of the possible”.  I have seen this occur during discussions around setting and revising river phosphorus standards in the UK: the regulators themselves are under pressure to balance environmental protection with economic development and tight standards can potentially limit what can be done in a catchment.

Another of our recent papers (this one’s not open-access, I’m afraid) shows that setting standards using empirical models is far from straightforward and we also recognise that standard setting is just one part of a longer process of nutrient management.   However, setting inappropriate standards simply as an expedience seems completely barmy, as you are never going to attain your desired ecological benefits.   The cynical view might be that, as the process of environmental change is invariably greater than the electoral cycle, there is limited accountability associated with such decisions, compared with more immediate political capital kudos from bringing investment and jobs to a region.

Poikane_et_al_2019_Fig8

Range of good/moderate river phosphorus (a) and nitrogen (b) threshold values grouped method used to determine the value. Different letters indicate groups that are statistically different (p ≤ 0.05).   Fig. 8 from Poikane et al. (2019).

All of our work has shown that, in most cases, the relationship between biology and nutrients is weak and, for this reason, large datasets are needed if robust inferences are to be drawn.  This leads to one further consequence of our work: setting environmental standards may only be possible if countries pool their data in order to produce big enough datasets with which to work.  This is particularly the case for smaller countries within the EU, but also applies to water body types that may be relatively infrequent in one country but are more widespread elsewhere.   I had recent experience of this when working on the Romanian stretches of the Danube: they simply did not have a wide enough gradient of conditions in their own territory, and we had to incorporate their data into a larger dataset in order to see the big picture (see “Beyond the Tower of Babel …”).    Writing about the benefits of international collaboration as the Brexit deadline looms obviously has a certain irony, but it needs to be said.  Far from being the distant and unaccountable law maker of Brexiteer mythology, in this field the European Commission has been quietly encouraging Member States to share experience and promote best practice.  One can only speculate about the future of the UK environment once free of Brussels oversight.

References

Philips, G., Teixeira, H., Poikane, S., Salas, F. & Kelly, M.G. (2019).   Establishing nutrient thresholds in the face of uncertainty and multiple stressors: a comparison of approaches using simulated data sets.   Science of the Total Environment684: 425-433.

Poikane, S., Kelly, M.G., Salas Herrero, F., Pitt, J.-A., Jarvie, H.P., Claussen, U., Leujak, W., Solheim, A.L., Teixera, H. & Phillips, G. (2019).  Nutrient criteria for surface waters under the European Water Framework Directive: Current state-of-the-art, challenges and future outlook.  Science of the Total Environment 695.  

Note on figures:

The methods used by Member States to derive nutrient thresholds are described in more detail in Poikane et al. (2019).   In brief, the approaches are:

1 – regression between nutrient and biological response;

2 – modelling;

3 – distribution of nutrient concentrations in water bodies classified (using ecological criteria) as high, good or moderate status;

4 – distribution of nutrient concentrations in all water bodies using an arbitrary percentile;

5 – expert judgement.  This includes values taken from the literature or from older European Directives. For example, for nitrate, the common use of the value 5.65 mg-N L−1 in freshwaters is likely to be derived from the guideline value of 25 mg L−1 of nitrate in the Nitrates Directive (91/676/EEC) or now repealed Drinking Water Directive (80/778/EC).

6 – The so-called OSPAR Comprehensive Procedure is used widely in coastal and transitional waters. In this, a water body is considered to be an ‘Eutrophication Problem Area’ if actual status deviates 50% or more from reference conditions.

7 – insufficient information.

Tales from prehistory

Stonehenge_Aug19

Microscopes and Monsters has been quiet for a couple of weeks, as I have been on holiday, part of which was spent “off grid” at the Green Man Festival in Wales.  From there, we headed to London for a Proms concert (two music festivals in a week!) via the Cotswolds and the ancient landscapes of Salisbury Plain.

My first visit to Stonehenge was 50 years ago, at which time you could pull off the A303 and wander amongst the columns unconstrained by fences and barriers.   Now the visitors are guided to a visitor centre two kilometres from the site, and offered a shuttle bus after being relieved of £20.  Or, if you prefer, you can walk across Salisbury Plain to the monument.  On a sunny afternoon in August this becomes part of the experience as there are ancient burial mounds (some pre-dating Stonehenge) both alongside the path and dotted around the horizon.   Stonehenge itself gradually rose up ahead of us, and we experienced a little of what the ancients must have felt as they approached Stonehenge along the processional way.

The last time that I was here was a stop off between field work on the nearby River Wylye and a meeting in Reading.   At the time I was engaged with two separate projects concerned with the health of chalk streams, which are characteristic of this part of southern England.   The approach we used elsewhere in the country was to compare what we found in samples we collected with what we expected to find if that site was in a pristine condition.

There was, at the time, a vigorous debate about how this “reference condition” should be defined.   This debate had a theoretical component (epitomised by Brian Moss’ paper in the reference list) but also a more pragmatic element (encapsulated by the other paper).  This was necessary because an ultra-strict, but theoretically sound, approach might not yield enough data from which a robust prediction of the “expected” ecology could be derived.   In essence, we searched out remote regions of the UK where population density was low and agriculture was not intensive and used these to derive our understanding of what to expect in the more densely-populated regions of the country.

Avebury_Aug19

Part of Avebury stone circle, Wiltshire, August 2019.  The photograph at the top of the post shows Stonehenge.

This worked quite well (although Brian Moss, predictably, had his own pithy thoughts on the approach).  However,  we simply could not find any sites that fulfilled our criteria of low population density and a low intensity of farming in those parts of lowland Britain where the underlying geology was Jurassic limestone, Cretaceous chalk or another formation that resulted in very hard water.  Our estimates of ecological health in such regions depend, as a result, on extrapolation and judgement rather than evidence.   That is all well and good for an academic journal but, in the case of the River Wylye, Wessex Water were being asked to spend hundreds of thousands of pounds to upgrade sewage works and, rightly, felt that they needed something more in order to explain the consequent price rises to their customers.

The OS maps of the region around my sampling points on the Wylye were dotted with symbols marking ancient monuments (long and round barrows, in particular) and the huge, mysterious religious sites of Stonehenge and Avebury lie just to the east.  Together, they point to continuous occupation of the area for over four thousand years, which means that it is hardly a surprise that we found no sites that met our criteria for a “pristine” stream.   The chalk streams of southern England are famous and rightly regarded as a threatened habitat, but they are not natural.  It is better to think of them as aquatic equivalents to hay meadows or hedgerows: ecologically-rich habitats that have been created by human activity, rather than as a result of “natural” ecological processes.

That means that it we need to diverge from a strict definition of “reference conditions” in order to set a baseline for ecological expectations in such circumstances.  For macrophytes – the larger aquatic plants – there is an expectation that the flora in this baseline state will be rich; however,  this assumption does not work for the microscopic algae in chalk streams.  We also found that river stretches where the macrophytes are thriving and, apparently, healthy, often have diatoms that suggest nutrient enrichment.  That is a puzzle for which we think we may have a solution, and which I will write about in a future post.

Silbury_Hill_Aug19

Silbury Hill, part of the Avebury World Heritage Site.  It is a Neolithic site whose original purpose is unknown though, to a visitor from north-east England, it looks remarkably like a slag heap.

We use low population density and absence of intensive agriculture as a proxy for “natural” in the uplands but need to treat this assumption with care too.  There might be fewer grand Neolithic monuments in the north of England or Scotland but signs of ancient habitation are there if you care to look (see “More reflections from the dawn of time”).   The moorland where these streams rise is, itself, an artificial habitat, created when early agriculturalists removed the natural tree cover.  Modern streams in these areas are, therefore, exposed to more light than in their primeval states and that will have important consequences for the plant life that lives within them.  They may be the best we have, but are hardly “natural”.

Two factors, both highly pragmatic, brought this debate to a close.   The first was realisation that, whatever the rights and wrongs of purist versus practical standpoints, most of our rivers are very degraded and alterations in the approach used to define the “expected” condition would be unlikely to change this broad scale picture.   About sixty-five per cent of our rivers fail to achieve good ecological status despite the flaws in the reference concept.  The second factor was simply that, since the financial crisis in the 2008-2010, the UK environment agencies have had too few resources to improve the reference concept.   As any such “improvement” will almost certainly make the true state of UK rivers look even worse than it does at the moment, a more cynical argument is that few of the bureaucrats involved in the process have any great enthusiasm for the task anyway.

References

Moss, B. (2008).  The Water Framework Directive: total environment or political compromise.  Science of the Total Environment400: 32-41.

Pardo, I., Gómez-Rodríguez, C., Wasson, J.G., Owen, R., van de Bund, W., Kelly, M., Bennett, C., Birk, S., Buffagni, A., Erba, S., Mengin, N., Murray-Bligh, J. & Ofenböeck, G. (2012).  The European reference condition concept: A scientific and technical approach to identify minimally-impacted river ecosystems.  Science of the Total Environment420: 33-42.

 

Close to the edge in Wastwater …

Wastwater_190610

I’m back in the Lake District for this post, standing beside Wastwater, the most remote and least disturbed of England’s lakes and, especially obvious on a sunny day in June, the most spectacularly-situated.  I stood on the western shore looking across to the screes and, beyond to the mass of Scafell Pike, England’s highest peak, looming up in the distance.

When I was done admiring the scenery I adjusted my focus to the biology of the lake’s littoral zone and some dark brown – almost black – marks on the boulders in the littoral zone.  In contrast to the grand vista stretching away to the north, these were beyond unprepossessing and my attempts to photograph them yielded nothing worth including in this post. However, I had seen similar looking marks in Ennerdale Water and there is a photograph in “Tales from the splash zone …” that should give you some idea of what I was seeing.

Under the microscope, my expectations were confirmed.  As in Ennerdale Water, these patches were composed of Cyanobacteria – gradually tapering trichomes of Calothrix fusca and more robust trichomes of Scytonema calcareum, both encased in thick, brown sheaths which, when viewed against the granite boulders on which they lived, resulted in the dark appearance of the growths.  To the untrained eye, these barely look like lifeforms, let alone plants yet they offer an important lesson about the health of Wastwater.

Calothrix_fusca_Wastwater_June19

Calothrix cf fusca from the littoral zone of Wastwater, June 2019. Scale bar: 20 micrometres (= 1/50thof a millimetre)

Though hard to see amidst the tangle of filaments in these population, both Calothrix and Scytonema have specialised cells called “heterocysts” that are capable of capturing atmospheric nitrogen (you can see these in the photographs of Nostoc commune in “How to make an ecosystem (2)”.   Nitrogen fixation is a troublesome business for cells as they need a lot of energy to break down the strong bonds that bind the atoms in atmospheric nitrogen together.   That means that plants only invest this energy in nitrogen fixation when absolutely necessary – when the lack of nitrogen is inhibiting an opportunity to grow, for example.   The presence of these Cyanobacteria in Wastwater is, therefore, telling us that nitrogen is scarce in this lake.

The dogma until recently was that phosphorus was the nutrient that was in shortest supply in lakes, so attention has largely focussed on reducing phosphorus concentrations in order to improve lake health.   Over the last ten years, however, evidence has gradually accumulated to show that nitrogen can also be limiting under some conditions.   That, in turn, means that those responsible for the health of our freshwaters should be looking at the nitrogen, as well as the phosphorus, concentration and, I’m pleased to say, UK’s environmental regulators have now proposed nitrogen standards for lakes.   That marks an important shift in attitude as, a few years ago, DEFRA were quite hostile to any suggestion that nitrogen concentrations in freshwaters should be managed.   In this respect, the UK is definitely out step with the rest of Europe, most of whom have nitrogen as well as phosphorus standards for freshwaters.

Scytonema_crustaceum_Wastwater_June16

Scytonema cf calcareum from the littoral zone of Wastwater, June 2019. Note the single and double false branches.   Scale bar: 20 micrometres (= 1/50thof a millimetre)

Wastwater flows into the River Irt and, a few kilometres down from the outflow, I found another nitrogen-fixing Cyanobacterium, Tolypothrix tenuis.  Once again, I could not get a good photograph, but you can see images of this in an earlier post from the River Ehen in “River Ehen … again”.   Nitrogen fixing organisms, in other words, are not confined to the lakes in this region, which raises the question why the UK does not have nitrogen standards for these as well (see “This is not a nitrate standard …”).   In rivers such as the Irt and Ehen that are already in good condition, it might only take a small increase in nitrogen concentration for the ecology to change.   Whether the loss of these nitrogen-fixing organisms will be noticed is another question.

For now, I am just happy to see that nitrogen in lakes has finally made it to the regulatory agenda.  It has taken about 15 years for the science to percolate through the many layers of bureaucracy that are an inevitable part of environmental management.  Give it another decade and maybe we’ll get nitrogen standards for rivers too.

References

Maberly, S. C., King, L., Dent, M. M., Jones, R. I., & Gibson, C. E. (2002). Nutrient limitation of phytoplankton and periphyton growth in upland lakes. Freshwater Biology. https://doi.org/10.1046/j.1365-2427.2002.00962.x

Moss, B., Jeppesen, E., Søndergaard, M., Lauridsen, T. L., & Liu, Z. (2013). Nitrogen, macrophytes, shallow lakes and nutrient limitation: Resolution of a current controversy? Hydrobiologia. https://doi.org/10.1007/s10750-012-1033-0

P.S. any guesses as to which 1970s prog rock group I was listening to over the weekend?  The clue is in the title.

Out of my depth …

Castle_Eden_Dene_March19

I was about to start writing up an account of my latest visit to Castle Eden Dene, when I realised that I had forgotten to describe my previous visit, back in March.   I’ve already described a visit in January, when the stream was dry (see “Castle Eden Dene in January” and “Tales from a dry river bed”) and promised regular updates through the year.   It seems that, amidst all the travel that filled my life over the last three months, I overlooked the post that I should have written about the visit that I made in early March.

Whereas the river was dry in January, rain during February meant that, when I returned to the Dene on 11 March, some rather turbid water was flowing down the channel on its short journey to the North Sea.   There is, finally, something more like a stream habitat from which I can collect some diatoms.

Many of the diatoms that I found in March belonged to taxa that I had also seen in January; however, the proportions were quite different.   In some cases, species that were common in January were less common now (e.g. Humidophila contenta*) but there was a small Nitzschia species with a slightly sigmoid outline that was very sparse in the January sample but which was the most abundant species in the March sample.  I’ve called this “Nitzschia clausii” but the Castle Eden Dene population does not fit the description of this perfectly.   A lot can change in a couple of months, especially when dealing with fast-growing organism such as these, as my posts on the River Wear showed (see “A year in the life of the River Wear”).  Castle Eden Burn’s highly variable discharge just adds another layer of complication to this.

CED_diatoms_Mar19

Diatoms from Castle Eden Dene, March 2019:   a. – e.: Nitzschia cf clausii; f. Tabularia fasiculata; g. Tryblionella debilis; h. Luticola ventricosa; i. Luticola mutica; j. Ctenophora pulchella.  Scale bar: 10 micrometres (= 1/100thof a millimetre).   The picture at the top of the post shows Castle Eden Burn at the time that the sample was collected.   

Nitzschia clausii is described as being “frequent in brackish freshwater habitats of the coastal area and in river estuaries, as well as in inland waters with strongly increased electrolyte content”.   A couple of the other species from this sample – Ctenophora pulchella and Tabularia fasiculata (both illustrated in the diagram above) – have similar preferences.    My experience is that we do often find a smattering of individuals belonging to “brackish” species in very hard water, as we have in Castle Eden Burn.  Average conductivity (based on Environment Agency records) is 884 µS cm-1; however, values as high as 1561 µS cm-1.   The fluctuating discharge plays a role here, as any evaporation will serve to concentrate those salts that are naturally present in hard freshwater.   This should probably not be a big surprise: life in brackish waters involves adapting to fluctuating osmotic regimes so species that can cope with those conditions are also likely to be able to handle some of the consequences of desiccation.

Average values of other chemical parameters from 2011 to present, based on Environment Agency monitoring are: pH: 8.3; alkalinity: 189 mg L-1 CaCO3; reactive phosphorus: 0.082 mg L-1; nitrate-nitrogen: 1.79 mg L-1; ammonium-nitrogen: 0.044 mg L-1.   There is some farmland in the upper catchment, and the burn also drains an industrial estate on the edge of Peterlee but, overall, nutrient concentrations in this stream are not a major concern.   The Environment Agency classifies Castle Eden Burn as “moderate status” due to the condition of the invertebrates but does not offer any specific reason for this. I suspect that the naturally-challenging habitat of Castle Eden Burn may confound assessment results.

I’ve also been given some data on discharge by the Environment Agency which shows how patterns vary throughout the year.  The two sampling locations are a couple of kilometres above and below the location from which I collect my samples and both have more regular flow.  However, we can see a long period between April and September when discharge is usually very low.   The slightly higher values recorded in July are a little surprising, but are spread across a number of years.   It is also, paradoxically, most common for the burn to be dry in July too: clearly, a month of extremes.  As my own visits have shown, it is possible for the burn to be dry at almost any time of the year, depending on rainfall in the preceding period   The dots on the graph (representing ‘outliers’ – records that exceed 1.5 x interquartile range) show that it is also possible to record high discharges at almost any time during the year too.  I should also add that, as I am not a hydrologist, I am rather outside my comfort zone when trying to explain these patterns.  I would have said ‘out of my depth’ though that’s not the most appropriate phrase to use in this particular situation.

CED_discharge

Discharge in Castle Eden Burn, as measured by the Environment Agency between 2007 and present.   Measurements are from NZ 4136 2885 (‘upstream’) and NZ 45174039 (‘downstream’).  

* Note on Humidophila contenta:it is almost impossible to identify this species conclusively with the light microscope as some key diagnostic characters can only be seen with the scanning electron microscope.   However, all members of this complex of species share a preference for intermittently wet habitats so these identification issues are unlikely to lead to an erroneous ecological interpretation.  It is probably best to refer to this complex as “Humidophila contenta sensu lato” rather than “Humidophilasp.” order to distinguish them from those species within the genus that can be recognised with light microscopy.

Reference

Lange-Bertalot, H., Hofmann, G., Werum, M. & Cantonati, M. (2017).  Freshwater Benthic Diatoms of Central Europe: over 800 Common Species Used in Ecological Assessment. English edition with updated taxonomy and added species.  Edited by M. Cantonati, M.G. Kelly & H. Lange-Bertalot.  Koeltz Botanical books, Schmitten-Oberreifenberg.

More algae from Shetland lochs …

Lamba_Water_May19

I’m taking you back in the Shetland Islands for this post, and onto the remote moorlands of northern Mainland.   When I visited this particular loch in 2016, I noticed a lot of slippery filaments of Batrachospermum attached to the sides of the cobbles in the littoral zone (see “Lucky heather …”).   This time around, I explored further around the edge of the loch and, in the south-west corner noticed prolific growths of algae in the shallow peaty water.  Closer inspection showed that these, too, were the red alga Batrachospermum and, though they were not fertile, Dave John suggests that they are likely to be B. turfosum Bory.

Batrachospermum_Lamba_Water_May19

Tufts of Batrachospermum turfosumin the littoral zone of Lamba Water, north Mainland, Shetland Islands, May 2019.   The picture frame is about 15 centimetres across. 

If you have a hand lens you can just about make out a bead-like structure when observing Batrachospermum in the field; however this becomes much clearer with higher magnification.   I think it looks like a bottle-brush when seen under the microscope at low magnification, with whorls of side-branches arising from the central filament.  At higher magnification, these filaments can be seen to have a bead-like structure, with cell size gradually reducing with distance from the centre.

What you cannot do in the field is separate Batrachospermumfrom the closely-related genus Sheathia(see “News about Batrachospermum… hot off the press”).   I usually tell people that, for a general overview of the condition of a stream or lake (for example, as part of the UK macrophyte survey technique), then simply recognising that you have “Batrachospermum” (meaning Batrachospermum or Sheathia) should be enough.   In my experience, the presence of Batrachospermumis usually a good indication that the water body is in a healthy condition.  However, I have been told that Batrachospermumis often found growing prolifically in very enriched conditions in southern chalk streams, which would challenge this assumption.   This may be because the species that are found in southern chalk streams are different to those that I encounter in my more usual haunts in northern England and Scotland.  But it is also possible that the factors I described in “The exception that proves the rule …” pertain in those cases too.

Batrachospermum_turfosum_Lamba_Water

Filaments of Batrachospermum turfosum from Lamba Water, north Mainland, Shetland Islands, May 2019.   The upper photograph shows a low magnification view of a filament (about 350 micrometres, or 0.35 millimetres, wide) whilst the lower image shows a whorl of side branches arising from the main stem.  Scale bar: 20 micrometres (= 1/50thof a millimetre).  

We often run into this dilemma with filamentous freshwater algae: it is reasonably straightforward to identify the genus but we need reproductive organs to determine the species.  As they seem to survive quite happily in the vegetative state our understanding of the ecology of individual species (rather than the genus as a whole) is scant so it is hard to tell whether there is value in that missing information or not.   In a few cases – this is one – better taxonomic understanding has revealed that we may not even be dealing with a single genus but the lists used for applied ecological surveys still persist with the old concepts.

This creates a toxic spiral of consequences: it is hard to split into species so most people don’t bother. Because we don’t bother, our interpretations are based on generalisations drawn from the behaviour of the genus.  This means we don’t generate the data needed to demonstrate the value (or otherwise) of the effort required to go from genus- to species-level identifications.   So we carry on lumping all records to genus (or, in this case, a pair of genera) and accept a few records that our out of line with our expectations as “noise”.  The situation is probably worse in the UK than in many places because there are very few people in universities specialising in these organisms and, as a result, no-one is producing the data that might break us out of this spiral.

We found Batrachospermum turfosum in a few other locations during our visit, but nowhere, even in nearby lochs, was it in such quantity as we saw in Lamba Water.   Chance might play a part in determining its distribution on a local scale but that ought to be the explanation of last resort rather than the go-to answer when we are worryingly short of hard evidence.