Transitory phenomena …

Fieldwork in the River Ehen has been an unusually pleasurable experience over the past few months, even to the extent of abandoning waders altogether and wearing just a thin pair of neoprene beach shoes and shorts as I worked.   Curiously, there were few obvious signs of the prolonged period of low flow here, but that is partly due to the pumps installed by United Utilities to keep the river running whilst the lake was drawn down (see “Life in the deep zone …”).   I did, however, find some intriguing green patches on fine sediments at the margins.

Most of the bed in this part of the river consists of much coarser sediments than these which are, I suspect, silt and sand deposited on the occasions when Ben Gill (which joins the Ehen immediately below Ennerdale Water) is flowing.   Current velocity is lower at the edges of the river, allowing fine sediments to settle out and create temporary sandbanks.   One decent spate will be all that is needed, I suspect, to wash much of this downstream.  However, there has not been a period of prolonged high flow for several months and there is, as a result, a thin green mat of algae growing on the upper surface of this sediment.

Mats of Oscillatoria on fine sediments beside the River Ehen just downstream from Ennerdale Water, August 2018.   The total length of the mats in the left hand photograph is about one metre. 

I scraped up a small sample to examine under my microscope.  I was expecting to see the broad filaments of the cyanobacterium Phormidium autumnale which I often find at a site about five kilometres downstream (see “’Signal’ or ‘noise’?”) but what I saw was much narrower filaments, some of which were slowly gliding forwards and backwards.   These belong to a species of Oscillatoria, a relative of Phormidium that is common in the plankton.  A few species, however, do live on surfaces and can, as I could see in the Ehen, form mats.  I have, in fact, described a different mat-forming species of Oscillatoria (O. limosa) from the River Wear close to my home (see “More from the River Wear”) and this, too, had been favoured by a long period of warm weather and low flow.   The filaments in the River Ehen were much narrower – just a couple of micrometres wide – and had relatively long cells (two or three times longer than wide) but, in other respects, they clearly belonged to the same genus.

Microscopic views of Oscillatoria filaments from the River Ehen, August 2018.   The upper photograph was taken at medium magnification (400x) and the lower image was taken at 1000x.  The constant motion of the filaments means that it is not possible to use stacking software to obtain a crisp image.  Scale bar: 10 micrometres (= 1/100th of a millimetre). 

The motion that I could see is thought to be due to a layer of tiny fibres (“microfibrils”) which wind around the inner layer of the cell wall in tight spirals.   Movement is caused by waves that are propagated along these fibres, meaning that the filament actually rotates as it moves (though this is almost impossible to see with a light microscope).   The filaments can move either towards or away from light, depending on the intensity, at a speed of up to 11 micrometres per second (that’s about a millimetre a day or, for any petrolheads who are reading, 0.00004 kilometres per hour).  This allows the filaments can adjust their position so that they are neither in the dark nor exposed to so much light that they are likely to do damage to their photosynthetic apparatus (see “Good vibrations under the Suffolk sun” for more about this).   The result is that filaments will tend to converge, Goldilocks-style, at the point where light conditions are “just right”.  You can see some sediment particles settling on the top of the mat in one of the images and we can expect the filaments to gradually adjust their positions, incorporating these particles, over time.

Last year, I wrote about Microcoleus, a relative of Oscillatoria, which formed mats on saltmarshes and explained how this could be the first stage of colonisation of damp habitats by plants (see “How to make an ecosystem”).   We are seeing the same processes happening here, but the life expectancy of these mats is much lower.  They may well be gone next time I visit, depending on how the Cumbrian climate behaves over the next couple of weeks.   They are transitory phenomena, here today and gone tomorrow but, like the subjects of some of my other recent posts, particularly favoured by the long period of settled weather that we have enjoyed over recent weeks.

Reference

Halfen, L.F. & Castenholz, R.W. (1971).  Gliding motility in the blue-green alga Oscillatoria princeps.  Journal of Phycology 7: 133-145.

Note: you can read more about how the heatwave has affected fresh water in the Lake District in Ellie’s MacKay’s recent post on Freshwaterblog

Advertisements

Life in the colonies …

Another outcome of my visit to Ennerdale Water a couple of weeks ago in July (see “Life in the Deep Zone”) was some tiny green spheres in the sample I collected from one of the small streams flowing into the lake’s north-west corner.   The stream was very short, little more than a seepage arising from a wet rush-dominated area of a field just twenty metres or so from the lake margin and, at the point which I sampled, there was a tangle of filamentous algae (Stigeoclonium, Mirsrospora and Mougeotia) as well as a distinct diatom-dominated film on exposed stones.    The colonies looked like tiny peas in my sample tray but I suspect that they were attached to rocks or aquatic vegetation before I disrupted them. Under the microscope, these turned out to be colonies of the green alga Chaetophora pisiformis, a relative of Draparnaldia and Stigeoclonium, both of which I have written about before (see “The exception that proves the rule …” and “A day out in Weardale …”.  Like those, Chaetophora has branched filaments but they differ in forming well-defined colonies that are visible to the naked eye.

The pictures below show the form of colonies very clearly.  Chaetophora colonies are firm to the touch and cannot easily be squashed under a coverslip.   I overcame this by using a cavity slide, and taking one of the smallest colonies that I could find in order to photograph it with as little damage as possible.  Note how there is a very clear edge to the colony, whereas Draparnaldia and Stigeoclonium have a mass of filaments and mucilage but no obvious border between the “colony” and the surrounding environment.  Draparnaldia sometimes forms discrete colonies (see “The exception that proves the rule …”) but these are much softer and more easily squashed onto a slide.

Top: colonies of Chaetophora pisiformis from a small stream flowing into Ennerdale Water, with a one cent coin for scale; bottom left: lower power (x40) view of a colony.  The picture frame is about two millimetres across; bottom right: medium power (x100) view of the same colony.

Viewed at higher magnifications, the branches of the filaments are clear. They tend to be clustered towards the tops of the filaments and, in this case at least, end abruptly, rather than tapering to fine hairs.  I explained in the posts mentioned above how these fine hairs are used by the algae as means of capturing the nutrients that they need.  Chaetophora can form these hairs, but it does so less often, in my experience, than Draparnaldia and Stigeoclonium.   There will be dead and decaying vegetation in the rush-dominated swamp from which the stream originates, and the enzymes that these algae produce will be able to harvest any phosphorus from organic particles that result from this decay.  That’s the theory for Stigeoclonium at least, but I suspect that the colonies of Chaetophora are also highly efficient recycling units: the filaments are embedded in a firm mucilage that is far more than an inert polysaccharide gunk.   Any phosphorus that is released from a filament will be far more likely to be hoovered up by another filament than to drift downstream whilst the phosphatase enzymes will also be on hand at the colony surface to savenge any stray nutrients from the seepage.  These tight colonial forms are, in other words, fortresses of plenty in an otherwise inhospitable landscape: well adapted to nutrient-stressed situations and, as a paucity of nutrients is the natural condition of streams, the presence of these colonies is a good sign that this stream is in good condition.

Filaments of Chaetophora pisiformis from a small stream flowing into Ennerdale Water, July 2018.  Scale bar: 20 micrometres (= 1/50th of a millimetre). 

Reference

Whitton, B.A. (1988).  Hairs in eukaryotic algae.   pp. 446-480.  In: Algae and the Aquatic Environment (edited by F.E. Round).  Biopress, Bristol.

Life in the deep zone …

The view above – looking along Ennerdale Water from the western end – is one that I’ve used before in this blog.  The difference today is that there is about twenty metres of foreshore exposed.  Normally, water covers all the area in the foreground.   Not today: Ennerdale Water is one more victim of our present drought conditions.  During the winter, we often see water splashing over the weir at the outfall; today, the weir head is a metre above the lake level and flow in the River Ehen is maintained only by pumps installed by United Utilities.

When W.H. Pearsall visited Ennerdale Water in the 1920s, he considered it to be one of the most primitive of the Lake District’s lakes (see “The power of rock …”).   However, this supposedly wild lake had been tamed by a weir since the middle of the 19th century in order to provide drinking water for Whitehaven and Workington and surrounding areas.   That, in turn, has consequences for the river downstream, especially at times such as this when, unless augmented by pumps, there would be no water in the River Ehen below the outfall.   At some point in the next decade, a new water infrastructure project will pipe water to west Cumbria from Thirlmere, after which the weir can be removed and fluctuations in water level in both lake and river will be more natural.

The weir at the outfall of Ennerdale Water, with the fish pass at the far end. 

Meanwhile, however, I was able to explore areas of the lake littoral zone that would normally be hidden from me.  My notebook, for example, records my observations that this part of the lake shore has a stony bottom yet, as can be seen from the picture above, these form a belt about 20 metres wide, after which there is firm sand.   Normally, this would be close to the limit of safe wading but, today, I could walk out with just a pair of thin neoprene shoes.   Looking down, I could see a number of tufts of the alga Nitella flexilis growing in this sand.   I’ve written about this species before (see “Finding the missing link in plant evolution …”) and have seen it in the lake before, but not in this particular location. Standing with the lake water lapping against my shins I could bend down and take some photographs of these with my underwater camera that give this usually chilly location a semi-tropical feel.

It is a useful reminder to those of us who dabble in lake littoral zones and think that we understand their ecology that a lot happens beyond the depth in which we can safely wade.   Marco Cantonati and colleagues, for example, have found big changes in the composition of the algal flora of Alpine lakes when they used Scuba diving to explore the depths of their littoral zones.  No doubt, we would see similar changes if we were to try the same in the Lake District.

References

Cantonati, M., Scola, S., Angeli, N., Guella, G. & Frassanito, R. (2009).  Environmental controls of epilithic diatom depth-distribution in an oligotrophic lake characterized by marked water-level fluctuations.   European Journal of Phycology 44: 15-29.

Cantonati, M. & Lowe, R.L. (2014).  Lake benthic algae: toward an understanding of their ecology.  Freshwater Science 33: 475-486.

 

That’s funny …

The most exciting phrase to hear in science, the one that heralds new discoveries, is not “Eureka!” but “That’s funny”
Attributed to Issac Asimov

I have visited Croasdale Beck, in western Cumbria, twenty-eight times since 2015 and I thought I was beginning to understand it’s character (see “A tale of two diatoms” and “What a difference a storm makes”).   It is the unruly sibling of the River Ehen which, usually, offers a far less amenable environment for freshwater algae.  Last week, however, as we walked down the track towards the stream, we were confronted with the unexpected sight of a river bed that was bright green.  Our measurements, too, showed that not only was there a lot of algae in absolute terms, but there was far more here than we had measured in the River Ehen.  Usually, the situation is reversed, with the Ehen having more than Croasdale Beck.

Croasdale Beck at NY 087 170 looking upstream in April 2018.   The position of the gravel bar has shifted over the time that we have visited, with the wetted channel originally being at the right hand side, rather than being split into two.

It was hard to capture the extent of the algae growing on the river bed in a photograph, but the macroscopic image below captures the colour of the growths well, and you’ll have to use your imagination to scale this up to cover half of the stream bed.  Under the microscope, these growths turned out to be virtual monocultures of the green alga Draparnaldia glomerata.  This is common in clean rivers in spring time, and I often find it in the nearby River Ehen (see “The River Ehen in February”).  What my images do not show is the mucilage that surrounds the filaments.   In some cases, the growths can be almost jelly-like, so prolific is this mucilage.   One of the roles of this mucilage plays is to serve a matrix within which enzymes released by the fine hairs at the end of the filaments can act to release nutrients bound into tiny organic particles (see “A day out in Weardale …”).

Growths of Draparnaldia glomerata in Croasdale Beck (NY 087 170) in April 2018.  The upper image shows the filaments growing on submerged stones and the lower image shows the bushy side-branches growing from a central filament.  Scale bar: 100 micrometres (= 1/10th of a millimetre).

We also sample a site a couple of kilometres downstream on Croasdale Beck and, here again, the river bed was smothered in green growths.  I assumed that this, too, was Draparnaldia glomerata but, when I examined the filaments under the microscope, it turned out to be a different alga altogether: Ulothrix zonata (see “Bollihope Bhavacakra” and links therein).   There is little difference between the two sites that might explain this: the latter is slightly lower and is surrounded by rough pasture whilst the other is closer to the fells.   However, I have seen both Ulothrix zonata and Draparnaldia glomerata at several other sites in the vicinity, and a simplistic interpretation based on agricultural enrichment does not really work.

There were also a few obvious differences in the diatoms that I saw in the two samples.   In both cases, we sampled stones lacking green algae but, instead, having a thick brown biofilm.  Several taxa were common to both sites – Odontidium mesodon, for example (broadly confirming the hypothesis in “A tale of two diatoms …”) and Meridion circulare was conspicuous in both.   However, the lower site had many more cells of “Ulnaria ulna” than the upper site.   Again, there is no ready explanation but, at the same time, neither green algae or diatoms at either site suggests anything malign.

Filaments of Ulothrix zonata at Croasdale Beck (NY 072 161).   The upper filament is in a healthy vegetative state (although the cell walls are not as thickened as in many populations).  The lower filament is producing zoospores.   Scale bar: 25 micrometres (= 1/40th of a millimetre).

Diatoms in Croasdale Beck, April 2018.   a. upper site: note the abundance of Odontidium mesodon, plus cells of Gomphonema cf exilissimum, Achnanthidium minutissimum and Meridion circulare; b. lower site: note the presence of “Ulnaria ulna” as well as several of the taxa found at the upper site.   Scale bar: 25 micrometres (= 1/40th of a millimetre).  

So where does this take us?  I talked about the benefits of repeat visits to the same site in “A brief history of time wasting …” and I think that these data from Croasdale are making a similar point.  By necessity, most formal assessments of the state of ecology are based on very limited data, from which, at best, we get an estimate of the “average” condition of a water body over a period of time.  Repeat visits might lead to a more precise assessment of the “average” state but also give us a better idea of the whole range of conditions that might be encountered.  Here, I suspect, we chanced upon one of the extremes of the distribution of conditions.   Cold, wet weather in early spring delayed the growth of many plants – aquatic and terrestrial – as well as the invertebrates that graze them.   Then the period of warm, dry conditions that preceded our visit gave the algae an opportunity to thrive whilst their grazers are still playing “catch-up”.  I suspect that next time we visit Croasdale Beck will have its familiar appearance.   It is, nonetheless, sobering to think that this single visit could have formed fifty-percent of the evidence on which a formal assessment might have been made.

 

Desmid diversity …

Back in September, I wrote about a joint British Phycological Society and Quekett Microscopical Club field weekend looking at desmids in the Lake District (see “Desmid Masterclass”, “Lessons from School Knott Tarn” and “Different tarn, different desmids …”).  Dave John sent some of the samples that we collected to David Williamson, the UK’s leading expert on desmids but, at 92, too frail to join us, and he has now sent back some fine drawings illustrating the range of desmids that he encountered.

Two of the tarns (Long Moss Tarn, Kelly Hall Tarns) are already recognised as Internationally Important Plant Areas (IPAs) for desmids because of their desmid diversity and containing internationally very rare desmids (based largely on David Williamson’s records) so their diversity is not a complete surprise to us.  Nonetheless, David found a total of 129 desmid taxa in the three tarns, whilst another desmid specialist, Marien van Westen, identified almost 160 desmids in another set of samples from the same tarns.

The drawings are arranged in three plates, one for each tarn.   Desmids identified by David Williamson from the three tarns are illustrated.  The desmids have been numbered and the captions prepared by David John who is analysing the findings and comparing them with surveys dating back to the 1970s.   David Williamson has drawn the taxa at different scales to roughly balance the arrangement on the collage, and adjusted the sizes so important details are visible.   No details of the chloroplasts are given since all samples had been preserved in formalin.  A few of the desmids, particularly those that are very long, have not been included in the plates.

Desmids from Long Moss Tarn (SD 292 936), September 2017.   Long Moss Tarn is shown in the photograph at the top of this post.

Desmids from Kelly Hall Tarn (SD 289 933), September 2017.

Desmids from School Knott Tarn (SD 427 973), September 2017.

Key

1-Actinotaenium diplosporum; 2-Actinotaenium turgidum;  3-Bambusina borreri;  4-Closterium acerosum var. borgei; 5-Closterium angustatum;  6-Closterium archerianum var. pseudocynthia;  7-Closterium archerianum; 8-Closterium attenuatum;  9-Closterium baillyanum var. alpinum; 10-Closterium baillyanum; 11-Closterium closterioides; 12-Closterium costatum; 13-Closterium dianae var. arcuatum; 14-Closterium dianae var. minus;  15-Closterium didymotocum; 16-Closterium incurvum; 17-Closterium intermedium; 18-Closterium kuetzingii;  19-Closterium lunula; 20-Closterium navicula;  21- Closterium setaceum; 22-Closterium striolatum; 23-Cosmarium amoenum; 24-Cosmarium anceps; 25-Cosmarium binum; 26-Cosmarium brebissonii; 27-Cosmarium contractum;  28-Cosmarium davidsonii; 29-Cosmarium debaryi;  30-Cosmarium depressum; 31-Cosmarium formosulum; 32-Cosmarium hostensiense; 33-Cosmarium incrassatum var. schmidlei; 34-Cosmarium margaritatum; 35-Cosmarium margaritiferum; 36-Cosmarium monomazum var. polymazum;  37-Cosmarium obtusatum;  38-Cosmarium ornatum; 39-Cosmarium ovale;  40-Cosmarium pachydermum; 41-Cosmarium pachydermum var. aethiopicum; 42-Cosmarium perforatum var. skujae; 43-Cosmarium portianum; 44-Cosmarium punctulatum;  45-Cosmarium quadratum; 46-Cosmarium quadrum; 47-Cosmarium subochthodes var. majus; 48-Cosmarium subtumidum var. groenbladii;  49-Cosmarium subundulatum; 50-Cosmarium tetragonum var. ornatum ; 51-Cosmarium tetraophthalmum; 52-Cosmarium variolatum;  53-Cosmocladium tuberculatum; 54-Desmidium aptogonum; 55-Desmidium swartzii; 56-Docidium baculum; 57-Euastrum ampullaceum; 58-Euastrum ansatum;  59-Euastrum bidentatum var. speciosum; 60-Euastrum gemmatum; 61-Euastrum luetkemulleri; 62-Euastrum oblongum; 63-Euastrum pectinatum; 64-Euastrum pulchellum; 65-Euastrum verrucosum; 66-Gonatozygon aculeatum; 67-Gonatozygon brebissonii; 68-Groenbladia undulata; 69-Haplotaenium minutum;  70-Hyalotheca dissiliens;  71- Micrasterias americana var. boldtii; 72-Micrasterias compereana; 73-Micrasterias crux-melitensis; 74-Micrasterias denticulata; 75-Micrasterias furcata; 76-Micrasterias pinnatifida;  77-Micrasterias radiosa; 78-Micrasterias rotata; 79-Micrasterias thomasiana; 80-Micrasterias truncata; 81-Netrium digitus; 82-Netrium digitus var. latum; 83-Netrium interruptum;  84-Penium exiguum; 85-Penium margaritaceum; 86-Pleurotaenium coronatum var. robustum;  87-Pleurotaenium ehrenbergii; 88-Pleurotaenium truncatum; 89-Sphaerozosma filiforme; 90-Staurastrum arachne;  91-Staurastrum arctiscon; 92-Staurastrum bieneanum; 93-Staurastrum boreale var. robustum; 94-Staurastrum cristatum; 95-Staurastrum dilatatum; 96-Staurastrum inconspicuum; 97-Staurastrum kouwetsii; 98-Staurastrum lapponicum; 99-Staurastrum maamense; 100-Staurastrum polytrichum; 101-Staurastrum productum; 102-Staurastrum quadrangulare; 103-Staurastrum striolatum; 104-Staurastrum teliferum; 105-Staurastrum tetracerum; 106-Staurodesmus convergens; 107-Staurodesmus convergens var. wollei; 108-Staurodesmus cuspidatus var. curvatus; 109-Staurodesmus megacanthus; 110- Xanthidium antilopaeum; 111-Xanthidium antilopaeum var. laeve; 112-Xanthidium antilopaeum var. polymazum; 113-Xanthidium cristatum.