The River Wear in November

Wear_Wolsingham_181119

I was back at the River Wear last week for my final visit of the year.   The heatwave that dominated the summer seems like an aeon ago as I plunged my arm into the cold water to find some stones and take some photographs.  I’m curious to see what is here, though.   The river has surprised me several times already this year.  Has it reverted to type as the British climate has regained a semblance of normality, or will the changes that we saw in the summer (see “Summertime blues …” and “Talking about the weather …”) still have consequences for the algae growing on the river bed?

The river bed itself had many patches of green filamentous algae which, on closer examination, turned out to be my old friend Ulothrix zonata, an alga that is common in these parts and which has a distinct preference for early spring conditions (see “Bollihope Bavakakra” and references therein).   A closer look showed two types of filament present: the normal vegetative ones with a single chloroplast encircling the cell but also some where the cell contents have divided to produce zoospores which are released and which, if they land on a suitable surface, will produce new vegetative filaments.   The “parent” filaments, themselves, are produced as zygotes, produced back in the spring, germinate.  The zygotes are the product of sexual reproduction, triggered by lengthening days (see reference in earlier post) and are dormant through the summer, only germinating once day length shortens and temperatures start falling.

Wear_Wolsingham_bed_Nov18

The river bed of the River Wear at Wolsingham, November 2018, showing conspicuous growths of Ulothrix zonata.

Ulothrix_zonata_Nov18

Magnified views of Ulothrix zonatafilaments from the River Wear at Wolsingham.  The upper image shows a vegetative filament and the lower image shows filaments where the cell contents have divided up prior to the release of zoospores.  Scale bar: 20 micrometres (= 1/50thof a millimetre).

The areas between the patches of Ulothrix zonatawere covered with a thick film, composed primarily of diatoms, in contrast to the situation on my last two visits when non-filamentous green algae predominated.  This time, it was Achnanthidium minutissimumdominated my count (about 70% of cells) although, because they are relatively small, they comprised just under half of the total volume of algae present.   Other diatoms bumped this up to about 70 per cent of the total volume, with motile cells of Navicula and Nitzschia, which were so abundant at the start of the year, beginning to appear in numbers again.   The green cells that dominated my counts in July and September now only constitute about five per cent of the total.   The River Wear, in other words, has shaken off the effects of the summer, just as a healthy human gets over a winter cold, and is now back to its old self.

Wolsingham_181119_#1

A view down my microscope whilst examining samples from the River Wear at Wolsingham showing the predominance of Achnanthidium minutissimum with (on the right-hand side) a filament of a narrow Ulothrix (not U. zonata).  

Advertisements

More green algae from the River Wear

Having discussed some of the recent name changes in green algae in the previous post, I thought that I would continue this theme using some of the other taxa that I found in the samples I collected from the River Wear a couple of weeks ago.   The plate below shows some specimens that, 20 years ago, I would not have hesitated to call Scenedesmus, characterised by coenobia of either four cells or a multiple of four cells arranged in a row.   Over 200 species, and 1200 varieties and forms have been recognised although there were also concerns that many of these so-called “species” were, in fact, variants induced by environmental conditions.  A further problem is that Scenedesmus and relatives do not have any means of sexual reproduction.  This means that any mutation that occurs and which does not have strong negative effects on the organism will be propagated rather than lost through genetic processes.  Working out what differences are really meaningful is always a challenge, especially when dealing with such tiny organisms.

Scenedesmus and Desmodemus species from the River Wear, Wolsingham, September 2018.  a. and b. Scenedesmus cf ellipticus; c. Desmodesmus communis.   Scale bar: 20 micrometres (= 1/50th of a millimetre).

The onset of the molecular era shed some new light onto these problems but, in the process, recognised differences within the genus itself that necessitated it being split into three, two of which are on the plate below.  Scenedesmus, in this modern sense, has cells with obtuse (rounded) apices and mucilage surrounding the cells whilst Desmodesmus has distinct spines at the apices of marginal cells and, sometimes, shorter ones elsewhere too.   In addition to these there is Acutodesmus, which is similar to Scenedesmus (i.e. without spines) but whose cells have more pointed (“acute”) ends and which does not have any surrounding mucilage.   A further genus, Pectinodesmus, has been split away from Acutodesmus on the basis of molecular studies, although there do not seem to be any features obvious under the light microscope which can differentiate these.

The genera Ankistrodesmus and Monoraphidium present a similar situation.  In the past, these long needle- or spindle-shaped cells would all have been considered to be Ankistrodesmus.   Some formed small bundles whilst others grew singly and this, along with a difference in their reproductive behaviour, was regarded as reason enough for splitting them into two separate genera.   Both were present in the Wear this summer, but only Monoraphidium presented itself to me in a manner that could be photographed.  Two species are shown in the plate below.   Recent molecular studies seem to not just support this division but also suggest that each of these could, potentially, be divided into two new genera, so we’ll have to watch out for yet more changes to come.

Monoraphidium species from the River Wear, Wolsingham, September 2018.  a. and b.: M. griffthii; c. M. arcuatum.  Scale bar: 20 micrometres (= 1/50th of a millimetre).

The final illustration that I managed to obtain is of another common coenobium-forming alga, Coelastrum microporum.   Though the three-dimensional form makes it a little harder to see, cell numbers, as for Pediastrum, Scenedesmus and Desmodesmus, are multiples of four.  I apologise if the picture is slightly out of focus, but it is a struggle to use high magnification optics on samples such as these.  The oil that sits between the lens and the coverslip conveys the slight pressure from fine focus adjustments directly to the sample, meaning that the cells move every time I try to get a crisper view.  That means it is impossible to use my usual “stacking” software.   The answer is to use an inverted microscope so that the lens was beneath the sample.  However, I do this type of work so rarely that the investment would not be worthwhile.

That’s enough for now.   I’m off on holiday for a couple of weeks, so the next post may be from Portugal and perhaps I will also find time to sample the River Duoro as well as the products of the vineyards in it’s catchment…

Coelastrum microporum from the River Wear,Wolsingam, Septmber 2018.  Scale bar: 20 micrometres (= 1/50th of a millimetre).

References

An, S.S., Friedl, T. & Hegewald, E. (2008).  Phylogenetic relationships of Scenedesmus and Scenedesmus-like coccoid green algae as inferred from ITS-2 rDNA sequence comparisons.   Plant Biology 1: 418-428.

Hegewald, E., Wolf, M., Keller, A., Friedl, T. & Krienitz, T. (2010).  ITS2 sequence-structure phylogeny in the Scenedesmaceae with special reference to Coelastrum (Chlorophyta, Chlorophyceae), including the new genera Comasiella and Pectinodesmus.   Phycologia 49: 325-355.

Krienitz, L. & Bock, C. (2012).  Present state of the systematics of planktonic coccoid green algae of inland waters.   Hydrobiologia 698: 295-326.

Krienitz, L., Bock, C., Nozaki, H. & Wolf, M. (2011).   SSU rRNA gene phylogeny of morphospecies affiliated to the bioassay alga “Selanastrum capricornutum” recovered the polyphyletic origin of crescent-shaped Chlorophyta.  Journal of Phycology 47: 880-893.

Trainor, F.R. & Egan, P.F. (1991).  Discovering the various ecomorphs of Scenedesmus: the end of a taxonomic era.   Archiv für Protistenkunde 139: 125-132.

Talking about the weather …

September is here.  When I visited this site two months ago we were in the midst of the heatwave and the samples I collected from the Wear at Wolsingham were different to any that I have seen at this location before, dominated by small green algae (see “Summertime blues …”).   As I drove to Wolsingham this time, I could see the first signs of autumn in the trees and the temperatures are more typical of this time of year.   We have had rain, but there has not been a significant spate since April and this means that there has been nothing to scour away these unusual growths and return the river to its more typical state.

That does not mean, however, that there have been no changes in the algae on the submerged stones.  Some of these differences are apparent as soon as I pick up a stone.  Last month, there was a thin crust on the surface of the stones; that is still here but now there are short algal filaments pushing through, and the whole crust seems to be, if anything, more consolidated than in July, and I can see sand grains amidst the filaments.   Biofilms in healthy rivers at this time of year are usually thin, due to intense grazing by invertebrates, so I’m curious to know what is going on here this year.

A cobble from the River Wear at Wolsingham, showing the thick biofilm interspersed with short green filaments.   Note, too, the many sand grains embedded in the biofilm.  The bare patch at the centre was created when I pulled my finger through it to show how consolidated it had become.  The cobble is about 20 centimetres across.

Many of the organisms that I can see when I peer at a drop of my sample through my microscope are the same as those I saw back in July but there are some conspicuous differences too.   There are, for example, more desmids, some of which are, by the standards of the other algae in the sample, enormous.   We normally associate desmids with soft water, acid habitats but there are enough in this sample to suggest they are more than ephemeral visitors.   And, once I had named them, I saw that the scant ecological notes that accompanied the descriptions referred to preferences for neutral and alkaline, as well as nutrient-rich conditions.  Even if I have not seen these species here before, others have seen them in similar habitats, and that offers me some reassurance.    In addition to the desmids, there were also more coenobia of Pediastrum boryanum and Coelastrum microporum compared to the July sample.

A view of the biofilm from the River Wear at Wolsingham on 1 September 2019. 

There were also more diatoms present than in my samples from July – up from about 13 percent of the total in July to just over 40 per cent in September.   The most abundant species was Achnanthidium minutissimum, but the zig-zag chains of Diatoma vulgare were conspicuous too.  The green filaments turned out to be a species of Oedogonium, not only a different species to the one I described in my previous post but also with a different epiphyte: Cocconeis pediculus this time, rather than Achnanthidium minutissimum.   I explained the problems associated with identifying Oedogonium in the previous post but, even though I cannot name the species, I have seen this form before (robust filaments, cells 1.5 to 2 times as long as broad) and associate it with relatively nutrient-rich conditions.  That would not normally be my interpretation of the Wear at Wolsingham but this year, as I have already said, confounds our expectations.   I did not record any Cladophora in this sample but am sure that, had I mooched around for longer in the pools at the side of the main channel, I would have found some filaments of this species too.

Desmids and other green algae from the River Wear at Wolsingham, 1 September 2019.  a. Closterium cf. acerosum; b. Closteriumcf. moniliferum; c. Cosmarium cf. botrysis; d. Closterium cf. ehrenbergii; e. Coelastrum microporum; f. Pediastrum boryanum.   Scale bar: 50 micrometres (= 1/20th of a millimetre).  

It is not just the differences between months this year that I’m curious about.  I did a similar survey back in 2009 and, looking back at those data, I see that my samples from August and September in that year had a very different composition.   There was, I remember, a large spate in late July or early August, and my August sample, collected a couple of weeks later had surprised me by having a thick biofilm dominated by the small motile diatom Nitzschia archibaldii.   My hypothesis then was that the spate had washed away many of the small invertebrates that grazed on the algae, meaning that there were few left to feed on those algae that survived the storm (or which had recolonised in the aftermath)..   As the algae divided and re-divided, so they started to compete for light, handing an advantage to those that could adjust their position within the biofilm.   This dominance by motile diatoms was, in my experience of the upper Wear, as uncommon as the assemblages I’m encountering this summer, though probably for different reasons.

Other algae from the River Wear at Wolsingham, September 2018.    The upper image shows Diatoma vulgare and the lower image is Oedogonium with epiphytic Cocconeis pediculus.   Scale bar: 20 micrometres (= 1/50th of a millimetre).

I suspect that it is the combination of high temperatures and low flows (more specifically, the absence of spates that might scour away the attached algae) that is responsible for the present state of the river.  This, along with my theory behind the explosion of Nitzschia archibaldii in August 2009, both highlight the importance of weather and climate in generating some of the variability that we see in algal communities in rivers (see “How green is my river?”).   The British have a reputation for talking about the weather.   I always scan the weather forecasts in the days leading up to a field trip, mostly to plan my attire and make sure that I will, actually, be able to wade into the river.  Perhaps I also need to spend more time thinking about what this weather will be doing to the algae I’m about to sample.

Comparing algae on a summer’s day …

I wrote about the effect of the long period of low flow in the River Wear a few weeks ago (see “Summertime Blues …”) and have, now, completed two dioramas depicting the state of the river in the main channel and in a filamentous algae-dominated backwater.  The first of these is dominated by free-living green algae, either single cells or coenobia (see note at end), which is a big contrast to the situation I recorded two months earlier when the assemblage was dominated by diatoms, with patches of filamentous green algae (see “Spring comes slowly up this way” and “A question of scale”).

I sent a small sample of the Wolsingham biofilm to Dave John for his opinion on the green algae, and he sent back a list with twenty one different green algae that he had found.  Fortunately, this confirmed my own original list, with Keratococcus bicaudatus, Scenedesmus, Desmodesmus and Monoraphidium all featuring.   He also commented that Keratococcus is hard to differentiate from Chlorolobium (which is also in his list) and that most of the green alga on his list are usually considered to be planktonic (Keratococcus and Chlorolobium are exceptions) although, as my earlier post suggested, these definitely formed a distinct biofilm on the surface of stones this year in the River Wear.

A diorama showing the biofilm in the River Wear at Woslingham, July 2018.   You can see coenobia of Demodesmuss communis (centre), Scenedesmus sp. (left) and Coelastrum microporum (right – half tucked behind a mineral particle, along with single cells of Keratococcus bicaudatus (upright cells) and Monoraphidium.  There are also some cells of Achnanthidium minutissimum on short stalks in the foreground and a cluster of Fragilaria gracilis cells in the background.

There seems to be little hard evidence on the habit of Keratococcus and Chlorobium apart from references to a preference for benthic habitats.   I have drawn them as upright cells, drawing on their similarity in form to Characium, for which there is better evidence of an upright habit (although Characium tends to grow on other algae, rather than on hard surfaces).  Whereas I often have a strong sense of the three dimensional arrangement of organisms within benthic biofilms, so little has been written about the preferences of these green algae that, apart from the Keratococcus, I have had to show them as a jumble of cells and coenobia across the picture frame.

The second diorama depicts the tangle of filamentous green algae that I found in the pools beside the main channel.  As I mentioned in my earlier post, these are species that I do not normally find at this site and are here, I presume, due to the long period of unusually warm weather and low flows.   One difference between these communities and that captured in my first diorama is that there is a more obvious organisation of the constituents here: the Cladophora filaments, though appearing as a tangle to us, form the foundation upon which epiphytes grow directly, but also around which Melosira filaments are entangled, rather like the lianas in a tropical rain forest.   The quantity of diatoms around the Cladophora is so great that their brown pigments completely mask the Cladophora’s green cells but note how the density of Cocconeis cells reduces towards the tips – the youngest parts of the filaments.

Depiction of filamentous algae growing in the margins of the River Wear at Wolsingham in July 2018, showing epiphytic Cocconeis pediculus and entangled Melosira varians.

There have been some recurring themes in my posts this summer: one is that UK rivers have been behaving quite differently to previous years, due to a combination of low flows (more accurately, a lack of the scour associated with high flows) and warm, well-lit conditions.   The low flows have also resulted, to some extent, in rivers becoming more physically heterogeneous, with side-pools and silty areas developing distinct assemblages of algae quite different to those encountered in the main channel.   Sometimes, the sum of these effects is for rivers to look less healthy than is usually the case.

The Wear at Wolsingham is one of those sites that I like to think I know well, having visited the location so many times over the past 30 years.  It is reassuring, in a rather humbling way, to know that it still has the capacity to surprise me.

Dave’s list of green algae from the Wolsingham biofilm, July 2018

Desmids
Closterium moniliferum
Closterium acerosum
Cosmarium botrytis
Cosmarium venustum
Staurastrum striatum

‘Chlorococcalean’ algae
Acutodesmus dimorphus
Coelastrum astroideum
(very small and atypical)
Coelastrum microporum (very small and atypical)
Chlorolobion braunii
Desmococcus olivaceum (subaerial species)
Desmodesmus communis
Desmodesmus subspicatus
Keratococcus bicaudatus

Monoraphidium arcuatum
Monoraphidium contortum
Monoraphidium griffithsia
Monoraphidium irregulare
Scenedesmus arcuatus
Pseudopediastrum boryanum
Tetradesmus obliquus
Tetraedron minimum

Note

A coenobium is a colony in which the cell number is fixed at the time of formation and not augmented subsequently.   Coenobia are particularly common in the Chlorococcalees.

Summertime blues …

My reflections on the effects of the heatwave on freshwater algae continued with the latest of my regular visits to the River Wear at Wolsingham.  A comparison of the picture above with that at the head of “Spring comes slowly up this way …” says it all: the sun was shining and the gravel berms that I usually use to enter the river were occupied by families with barbeques whilst their children splashed around in the water.   At times such as this, a grown man picking up stones and then vigorously brushing their tops with a toothbrush would have invited too many questions, so I slunk off 100 metres or so downstream and found a quieter spot to explore.

The biofilm in the main channel of the River Wear at Wolsingham, July 2018. 

The first thing I noticed was that the biofilm coating the submerged stones at the bottom of the river had a greenish tinge, rather than its usual chocolate brown appearance.  It also was more crusty and less slimy to the touch than I usually see in this river.  When I got a specimen under the microscope, I could see that the composition was completely different to that which I had observed in previous months.   Most samples from this location that I’ve looked at in the past have been dominated by diatoms, with occasional spring flourishes of filamentous green algae.  Today, however, the sample was dominated by small green algae – a group that I am not very confident at identifying.   My rough estimate is that these formed about three quarters of all the algae that I could see, with diatoms and cyanobacteria each accounting for about half of the remainder.   The most abundant greens were a tiny single-celled alga that I tentatively identified as Keratococcus bicaudatus, along with a species of Scenedesmus and Desmodesmus communis.   There were also a number of cells of Monoraphidium arcuatum and some of Ankistrodesmus sp.

Two views of biofilms from the River Wear, Wolsingham in January 2018.   Left: from the main channel; right: from pools at the edge of the channel.

Green algae from the River Wear at Wolsingham, July 2018: a. Desmodesmus communis; b. Monoraphidium arcuatum; c. Scenedesmus sp.; d. unidentified, possibly Keratococcus bicaudatus.  Scale bar: 10 micrometres (= 1/100th of a millimetre).

However, there were also pools at the side of the channel, away from the main current but not so cut off that they were isolated from the river itself.   These were dominated by dense, brown filamentous growths, very similar in appearance to the Melosira varians flocs I described in “Some like it hot …”.  The filaments, however, felt coarser to the touch and, in close-up, could be seen to be branched, even without recourse to a microscope.   Once I got these under the microscope, I could see that they were filaments of Cladophora glomerata, another green alga, but so smothered with epiphytic diatoms (mostly Cocconeis pediculus) that they appeared brown in colour.

This combination of Cladophora glomerata and Cocconeis pediculus in the backwaters were as much of a surprise as the green-algae-dominated biofilms in the main channel.   These are species usually associated with enriched rivers (see “Cladophora and friends”) and, whilst I have seen Cladophora in the upper Wear before, it is an unusual occurrence.   Just as for the prolific growths of Melosira varians described in “Some like it hot …” it is tempting to leap to the conclusion that this must be a sign that the river is nutrient-rich.  However, the same conditions will apply here as there: “nutrients” are not the only resource that can limit plant growth and a steady trickle of phosphorus combined with warm, sunny conditions is just as likely to lead to prolific growths as a more conventionally “polluted” river.

Cladophora filaments smothered by the diatom Cocconeis pediculus in a pool beside the River Wear at Wolsingham, July 2017.   The frame width of the upper image is about 1 cm; the scale bar on the lower images is 20 micrometres (= 1/50th of a millimetre).

Another way to think of these situations is that, just as even healthy people are occasionally ill, so healthy streams can go through short periods when, based on a quick examination of plants and animals present, they exhibit symptoms associated with polluted conditions or simply (as for the first sample I described) different to what we usually expect to find.   A pulse of pollution might have passed downstream or, as seems to be happening at the moment, an unusual set of conditions lad to different organisms thriving.   Just as the ability to fight off infection forms part of a doctor’s understanding of “health”, so I expect that the River Wear will, in a few weeks time, be back to its usual state.   Healthy ecosystems, just like healthy humans, show “resilience”.   The irony is that, in this case, the “symptoms” are most obvious at a time when we are enjoying a summer better than any we’ve had in recent years.

Loving the low flows …

It is a long time since we have had a heatwave in the UK that has lasted as long as the present one.  The last that compares was in 1995, when the A1 near my house was busy with tankers ferrying water from Kielder Water in Northumberland to the drought-afflicted areas of Yorkshire.   Three weeks in and gardeners are staring anxiously at the parched soil and quietly praying for rain whilst, at the same time, trying to make the most of the rare luxury of warm weather.   Rivers, too, are showing the effects of the weather.  In some parts of the country, rivers are drying out and fish stocks are threatened.   That is not the case here in the north-east, but the River Wear is showing some signs.

The medieval Prebends Bridge is one of the most picturesque sights in Durham but, at the moment, the water underneath the bridge – and, indeed, throughout Durham – is bright green with flocs of algae.   Closer inspection showed this to be fronds of Ulva flexuosa: the cells are arranged to form a hollow tube, like a sausage skin, which traps the oxygen released by photosynthesis to give the alga an integral buoyancy aid.  You can see how this clearly in the image below. The common name for this alga is “gutweed”, which offers us another metaphor for the appearance of these semi-inflated sacs of cells.   This broad thallus is loosely attached to the river bed (see lower picture below) but is easily dislodged, after which the thalli drift downstream until they become entangled in other water plants or submerged branches.  In the current state, Durham’s rowers are grumbling that it is becoming entangled with their oars

We often see a little Ulva flexuosa in the Wear during the summer, but rarely as much as this.  It is a species that thrives under still, warm conditions and which also benefits from the weirs which regulate the flow of the river in Durham.   It is an alga that we tend to associate with nutrient-rich conditions, but this might be because the type of slow-flowing lowland rivers where it can become common are more likely to be nutrient rich than faster-flowing upland rivers where it is rarely found.   The current weather, in other words, creates the “perfect storm” for Ulva flexuosa.   Ironically, a storm – perfect or otherwise – will probably alter the flow regime in the Wear enough to flush it all downstream.  Another curiosity is that, despite being favoured by low flows and the near-standing water behind the weirs in Durham, Ulva flexuosa seems to be more likely to form mass growths in rivers rather than in lakes or ponds.

Ulva flexuosa in the River Wear, July 2018: the upper picture shows free-floating thalli, inflated by oxygen released by photosynthesis; the lower photograph shows thalli still attached to the river bed.

In my experience, the genus Ulva tends to be absent from nutrient-poor conditions which is subtly different to saying that it thrives when nutrients are abundant.  There are other factors – warm, stable conditions in particular that determine the success of the genus in any particular place.  The Wear has seen a significant decrease in nutrients in recent years yet here we are, in 2018, with a river full of Ulva.   I could say that, despite this reduction in nutrients, the Wear is still, relatively speaking, nutrient-rich, but the coincidence with an altered flow regime, a prolonged spell of warm weather and low flow conditions seems too great to ignore.   Ulva flexuosa is, in other words, a fine example of an alga where we need to think of a multifactorial “habitat template” rather than just in terms of single stressors.   We also need to think in terms of probabilities of mass proliferations increasing or decreasing as habitat factors vary, rather than a simple likelihood of finding Ulva at any particular location.

That means we need to look at climate change forecasts and, if there is a likelihood of more long, warm, dry summers, then we should expect more frequent blooms of Ulva in our rivers.  We may tinker with nutrient concentrations and even try to restore more natural flows (though Durham’s rowers will have a view if that was tried here!) but, ultimately, Ulva flexuosa is a species that enjoys a heatwave as much as any other resident of these islands.

A high magnification (x 400) view of the thallus of Ulva flexuosa from the River Wear.   Scale bar: 20 micrometres (= 1/50th of a millimetre).

Reference

Rybak, A.S. & Gąbka, M. (2017).  The influence of abiotic factors on the bloom-forming alga Ulva flexuosa (Ulvaceae, Chlorophyta): possibilities for the control of the green tides in freshwater ecosystems.  Journal of Applied Phycology https://doi.org/10.1007/s10811-017-1301-5

A question of scale …

It has taken some time to convert the observations from my last visit to the River Wear (see “Spring comes slowly up this way …”) into a picture.  Then, if you remember, the river was balanced between its “spring” and “summer” guises, the cool, wet weather that we experienced in March seems to have held the plants and animals that I usually see at this time of year back.   The result was a patchiness that was easy to see with the naked eye, but harder to visualise at the microscopic level.

First there were quite a few diatoms, Achnanthidium minutissimum in particular, – that suggested a thin biofilm subject to grazing by invertebrates (and I could see some chironomid larvae moving amongst the biofilm as I was sampling).   However, there were also diatoms such as Ulnaria ulna and Gomphonema olivaceum that suggested a thicker biofilm.    And finally there were filaments of the green alga Stigeoclonium tenue, mostly in discrete patches.   I never see healthy filaments of Stigeoclonium tenue smothered in epiphytes, which I have always assumed to be due to the copious mucilage that surrounds the plants.  However, I wondered if, nonetheless, Stigeoclonium contributes to overall habitat patchiness for the diatoms, as they subtly alter the way that water flows across the stone, reducing drag and shear stress in a way that favours Gomphonema and Ulnaria.   This is just speculation, of course…

That brings me back to a familiar theme: the problems of understanding the structure of the microscopic world (see “The River Wear in January” and “Baffled by the benthos (1)”) and, tangentially, to a paper on organisms’ responses to climate that was quoted at a scientific meeting I attended recently.   In this, Kristen Potter and colleagues demonstrated that there was typically a 1000 to 10,000 fold difference between the scale at which the distribution of organisms is studied and the size of those organisms.   That might be enough to draw out some coarse-scale patterns in distribution of species, but organisms actually live in microclimates, which may be patchy and which can often be quite different to the prevailing macroclimate (the difference between being exposed to full sun in open grassland and in the shade of a forest being a good example).   They suggested that the ideal spatial resolution is between one and ten times the organism’s length/height.

I see no reason why the same challenge should not also apply to the pressures faced by organisms in rivers where, again, we can get a certain amount of useful information from a coarse analysis of distribution in relation to (let’s say) average nutrient concentrations in a reach, but cannot really understand the reasons behind the spatial and temporal variation that we see in our data.  This mismatch between the scale at which organisms respond and the scale at which we study them is, I suspect, an even bigger problem for those of us who study the microscopic world.

A second illustration came at the same meeting in a talk by Honor Prentice from the University of Lund in Sweden.  She was dabbling in molecular biology years before this became a fashionable pastime for ecologists and has, over her career, developed some fascinating insights into how the structure of both plant communities and populations of individuals vary over short distances.  Her work has focussed on the island of Öland in Sweden which has the largest extent of alvar (limestone pavement) in Europe.   The system of grikes (the slabs) and clints (the fissures which separate the grikes) create quite different microclimates – the cool, moist conditions in the latter can create bog-like conditions with much lower pH than the limestone clints.   These differences influence not just the composition of the community but the genetic structure of species within these communities too.  I left thinking that if she could detect such differences at a scale barely more than one order of magnitude greater than the organisms, then how much more variation am I missing, with perhaps a five order of magnitude difference between organism size and sampling scale?

Based on these two studies, we would need to sample biofilms at a scale of about 1 mm2 in order to get a meaningful understanding of habitat patchiness in stream benthic algae.  That might just be possible with Next Generation Sequencing technologies, though I am not sure how one would go about collecting environmental data at that scale needed to explain what is going on.  Meanwhile, I am left with the coarse approach to sampling that is inevitable when you are five orders of magnitude bigger than the organism that you want to collect, and my imagination.

References

Potter, K.A., Woods, H.A. & Pincebourde, S. (2013).  Microclimatic changes in global change biology.   Global Change Biology 19: 2932-2939.

Prentice, H.C., Lonn, M., Lefkovitch, L.P. & Runyeon, H. (1995).   Associations between allele frequencies in Festuca ovina and habitat variation in the alvar grasslands on the Baltic island of OlandJournal of Ecology 83: 391-402.