Survival of the fittest (2) …

As well as the bright green flocs of Tribonema, the stream draining the Hadjipavlou chromite mine also had bright orange-red growths on some of the pebbles on its bed.  These seemed to be composed primarily of the Cyanobacterium Chamaesiphonthough I am still not sure what species.   Using the limited literature I have, from the UK and Germany, I would opt for either Chamaesiphon polymorphusor C. polonicus.   This particular alga was very easy to remove from stones, compared to other epilithic Chamaesiphon species (see “A bigger splash …”).  This is a feature of C. polymorphus, though the colour is more typical of C. polonicus.  On the other hand, that bright colour could be the response to high solar radiation, so maybe my north European guides are not that reliable.  It could be something else altogether.

Chamaesiphon_polonicus_Troodos

Chamaesiphon growths on pebbles in the stream draining Hadjipavlou chromite mine in the Troodos mountains, Cyprus, March 2019.

Chamaesiphon_Troodos_Mar19

Colonies of Chamaesiphon from Hadjipavlou chromite mine under the microscope.   Scale bar: 10 micrometres (= 1/100thof a millimetre). 

In addition to the Chamaesiphon, there were a few diatoms, mostly Achnanthidium minutissimumand Meridion circulare.   These are typical species of metal-rich streams, as is the general lack of diversity that was evident.   There were also a few filaments of the cyanobacterium Phormidium, along with quite a few Paramecium and Vorticella.  As these are both heterotrophs that feed on organic matter, their abundance is probably at least partly a reflection of the long time that the sample spent in my suitcase between collection and analysis.  The latter is a fascinating organism to watch: it is a goblet-shaped cell with a fringe of cilia around the lip (or “peristome”).  These beat in unison to create water currents that draw small particles towards the cell.   These particles mostly at least an order of magnitude smaller than the algae)  are then collected in food vacuoles where they are digested.   A few of these vacuoles can be seen in the image of Vorticella below.

Vorticella is attached to its substrate by a stalk which contains contractile filaments, giving it spring-like qualities.  Watching a Vorticella is a beguiling experience, with the undulating rows of cilia drawing food into the vestibule (as the opening is known).  At intervals, the whole cell lurched across the field of view as the “spring” in the stalk suddenly contracted, shortening the stalk.  After this, the stalk would gradually extend again, the cilia not having missed a beat meanwhile.   This process may simply be a device that enables the Vorticellato exploit its locality to the full, as well as creating some additional turbulence to keep a steady flow of particles towards the peristome.  To be honest, I haven’t seen a more convincing explanation but, even if we don’t know why it does what it does, Vorticella is a fascinating organism to watch, whether or not I understand what is going on.

I’ll be coming back to talk more about the diatoms in a future post, and writing these posts has also reminded me that I’ve never written about the interesting mine sites almost on my own doorstep.  I cut my ecological teeth looking at these habitats back in the 1980s and they are striking examples of natural selection in action.   So, plenty of potential for more left-field natural history …

Hadjipavlou_organisims_Mar19

Other organisms present in the Hadjipavlou chromite mine. a. – d.: Meridion circulare; e. Phormidiumsp.; f. Vorticellasp.   Scale bar: 10 micrometres (= 1/100thof a millimetre). 

Advertisements

Survival of the fittest (1) …

Hadjipavlou_mine_March19

When I signed up to a trip to Cyprus in late March I was anticipating feeling some warm Mediterranean sun on my skin after the ravages of the British winter.  I did not expect snow and sleet.   However, as one of our destinations was the Troodos mountains, the location of Cyprus’ only ski resort, maybe it was a case of unrealistic expectations.   Fortunately, we realised our mistake just in time to pack some warm clothes, and the unseasonable weather did, at least, mean that the spring flowers at lower altitudes were, even by Cypriot standards, particularly impressive.

I was in Cyprus primarily as a camp follower on a reconnaissance trip for a geology and botany excursion next year.   Cyprus is, to put it in layman’s terms, the outcome of a collision between the African and European continental plates.   The Troodos mountains are a geologist’s paradise, having a wide range of features arising from this and from associated volcanic activity.   As the molten rocks cooled, minerals precipitate out and the resulting geological strata reflect differences in the melting points of these minerals.   Some of these minerals, such as chromite, are commercially valuable and have been mined for centuries.   Indeed, the name Cyprus itself is derived from cuprous, the Greek word for copper, which was mined here since 4000 BC.

The Hadjipavlou mine is set amidst pine forests close to the highest point of the Troodos.  It was an active chromite mine from 1950 to 1954 and from 1979 to 1982 but was abandoned when cheaper sources of chromite became available in South Africa.   Over a million tonnes of ore were extracted in the period when the chromite mines in the area were active, but now there are few obvious signs apart from this adit driven into the hillside.   A small stream bearing water that has percolated through the rocks and collected in the mine’s galleries emerges from the mine entrance and tumbles down the hillside to join the stream below.   This, on closer inspection, has some quite interesting microbial growths.

First of all, having been told that this is a chromite mine, you might expect the water to carry toxic concentrations of heavy metals.   So you might also be surprised to see abundant growths of bright green algae thriving in the stream immediately downstream of the mine entrance.   This is, in fact, a common phenomenon in mine waters and happens, we think, because the fast-growing algae evolve metal tolerance whilst the animals that feed on them are slower to adapt.   This is, literally, survival of the fittest and, with nothing to eat them, the algae grow prolifically.

These filaments belong to the genus Tribonemawhich, despite being bright green in colour, actually belongs to the yellow-green algae, the Xanthophyta, rather than to the green algae.  This group is actually more closely related to the diatoms than to the green algae, though it can be hard to understand why simply by peering through a microscope.  One useful test is to add a little iodine  solutionto the slide: this binds to the starch inside green algae cells, staining them a dark brown colour.   The Xanthophyta, by contrast, do not have starch as their storage product so the cells are not stained by iodine.   The only other member of this group that I have discussed in this blog is Vaucheria, a very different alga (see “Who do you think you are?”).

Tribonema_affine_Troodos

Tribonema cf affinein the channel draining the Hadjipavlou chromite mine in the Troodos mountains, Cyprus, March 2019.   a. close-up of the alga in situ; b.  microscopic view of filaments; c. fragments of disintegrated filaments showing the H-shaped cell endings.  Scale bar: 10 micrometres (= 100thof a millimetre).   

Tribonemahas simple, unbranched filaments with two or more plate-like chloroplasts arranged around the cell periphery.   One other feature is the arrangement of the cell wall, which tends to consist of two overlapping halves.  When filaments disintegrate (as they often do) the fragments have an H-shape, with each end forming half the cell wall of a different cell.   The cells are, in fact, cylindrical but this is not apparent with the flattened perspective of a high magnification objective.   This feature is not universal in the Xanthophyta, nor is it unique to this group (a few green filamentous algae show the same characteristic) but it is a useful hint that you may be looking at Tribonema.

Whilst lush growths of algae is a common feature of streams draining mines, the species that form these growths can vary.   In the northern Pennines, I am used to seeing green algae in these habitats, but there are at least three different genera that I find.  Typically there is just one filamentous alga in this location, and they tend to be  constant over time: they are reliable sources for material for undergraduate practical classes as a result.  There is more to this story but I will have to come back to it at some point in the future.  .

There is also more to the algal flora of the Hadjipavlou chromite mine but, again, that will have to wait for another post.  I should also confess that, although I visited the mine briefly last year, these samples were collected by Heather, whilst I was sitting snugly below the snow line.

Return to the Serra da Estrela

towards_manteigas

Back in October I wrote about the algae and other plants that I had found in a small stream draining the Serra da Estrela mountains in Portugal (see “Notes from the Serra da Estrela”).  I’ve now had a chance to look more closely at the diatoms that I found there, and can offer a few thoughts on the ecology of the stream.

I collected two samples from the stream: one by brushing the top surface of the granite stones with a toothbrush and the other from the darker patches that I described in the earlier post.   These were a mix of algae and mosses, with the former dominated by cyanobacterial filaments and diatoms.   I merged the two samples prior to digesting them, but the biofilm on the submerged rocks was very thin so it is the diatoms from the dark patches that dominate the slide that I prepared from this stream.   As my preliminary observations suggested, motile diatoms were very abundant in this sample, with Surirella roba, Navicula angustaand N. exilis all common, along with some Pinnularia and Nitzschia.   I do not often find motile diatoms to be quite so abundant in fast-flowing upland streams, but I suspect that this is because I look in the wrong places.   Our standard sampling method involves scrubbing the tops of submerged stones which, in this type of stream at least, are not situations where motile diatoms thrive.  By contrast, the tangle of cyanobacterial filaments and dead organic matter creates a very different environment, where an ability to adjust position in order to move away from densely-shaded areas and, perhaps, from situations where bacteria and fungi had used up all the available oxygen, was an advantage.

surirella_roba_unhais_sep18

Surirella robafrom the stream at Unhais de Serra, September 2018; a. – f.: valve views; g. – i.: girdle views. Scale bar: 10 micrometres (= 1/100thof a millimetre). The photo at the top of the post shows the view along the valley of the Rio Zêzere towards Mantiegas in the Serra da Estrela.

misc_diatoms_unhais_sep18

Miscellaneous diatoms from the stream at Unhais de Serra, September 2018: a. – d.: Cocconeis placentula, complete frustule, rapheless valve and two raphe valves; e. – g.: Navicula exilis; h. N. angusta; i. – k.: Pinnularia subcapitata, two valve views and a girdle view.  Scale bar: 10 micrometres (= 1/100thof a millimetre). 

A chain-forming species of Fragilariawas abundant in the original sample although, by the time I had prepared a slide, the chain had disintegrated into individuals or pairs of cells.  These all belonged to a member of the Fragilaria capucinacomplex, though I am not sure which one. There were also a few cells of the free-living (i.e. non-chain-forming) Fragilaria gracilis.    Eunotia minoror a close relative was also present, sometimes also forming short chains and, finally, I found a number of cells of Cocconeis placentula(possibly var. klinoraphis).

These are all diatoms that I would expect to find in a stream draining a hard rock such as granite in an area that is remote from any industrial or mining influences that might lead to artificial acidification.   There are mines in the area, but these are further south.  These do have a measurable effect on the biology of local streams, as the references at the end of this post attest.   However, this particular stream appears to be in rude health.

A curious side-effect of the years that I have spent looking at diatoms is that a sample such as this can evoke the environments from which it came: an assemblage of soft-water circumneutral diatoms conjures, in my mind, a particular landscape.   The label on the slide, of course, takes me straight back to our time in the Serra da Estrela but, in a more general sense, the diatoms capture an essence that transcends any one particular time or place.   Analysing diatom slides can become an escape from the humdrum and a chance to remember warmer days …

fragilaria_unhais_sep18

Fragilaria species from the stream at Unhais de Serra, September 2018: a. – g.: chain-forming member of Fragilaria capucina complex (a.-c.: valve views; d.-g.: girdle views); h.-j.Fragilaria gracilis.  Scale bar: 10 micrometres (= 1/100th of a millimetre).

eunotia_cf_minor_unhais_sep18

Eunotiacf. minorfrom the stream at Unhais de Serra, September 2018: j. – n.: valve views; o. valve view of a related species; p. girdle views. Scale bar: 10 micrometres (= 1/100thof a millimetre). 

References

Luis, A.T., Teixeira, P., Almeida, S.F.P., Matos, J.X. & Silva, E.F. (2004).  Environmental impact of mining activities in the Lousal area (Portugal): Chemical and diatom characterization of metal-contaminated stream sediments and surface water of Corona stream.  Science of the Total Environment409: 4312-4325.

Silva E.F., Almeida, S.F.P., Nunes, M.L. & Fredrik, A.T.L. (2009). Heavy metal pollution downstream the abandoned Coval da Mó mine (Portugal) and associated effects on epilithic diatom communities.  Science of the Total Environment407: 5620-5636.

Unorthodox icons …

Towards the end of my most recent trip to Bucharest I came across, almost by chance, the Art Collections Museum, located on Calea Victoriei about 10 minute walk north from the National Museum of Art.  It brings together a number of collections that have been acquired by the state over the years, keeping each intact so that they reflect the taste of the original owners rather than reassembling them into broader thematic groupings.  On the day of my visit it was almost deserted, with attendants outnumbering visitors, despite this being the first Wednesday of the month, meaning that admission was free.   Their eyes followed me as I browsed, and their footsteps tracked mine through the empty rooms.

A museum such as this inevitably has some parts that enthral whilst other parts that fail to enthuse me. Highlights for me were the expressionist art of Alexandru Phoebus and the odalisques of Iosef Iser, both artists I had not previously encountered who had brought emerging ideas back from Paris and Berlin.   Then I walked into a room with a wall closely-hung with some very striking icons.  Two aspects struck me: their luminosity and the almost cartoon-nature of the scenes.  Imagine what Roy Lichtenstein might have produced were he to have brought his Pop Art sensibilities to religious subject matter.   The luminosity, I discovered, was because they had been painted on glass – a practice that arrived in the largely Catholic area of Transylvania from Hungary in the late 18thcentury.  This period coincided with the destruction of Orthodox monasteries and, with this, the loss of traditional icon painting skills.   Glass painting was, initially, a secular art form but, over time, it became a medium for religious imagery, initially drawing on Catholic representations of religious themes but gradually returning to Orthodox themes.

Bucharest_glass_icons_#1

Three glass icons from the Art Collections Museum in Bucharest.

The Catholic influence is apparent in the narrative content of some of the images that I’ve included here (see the Lamentation over the Dead Christ on the right-hand side of the top row and the centre of the bottom row, and the Last Supper on the left-hand side of the bottom row). Compare these with more traditional icons (see, for example, “The art of icons …”).   The middle image on the upper row is the Mystical Winepress, drawing on the metaphor of Christ as the true vine (Isaiah 27:2-5, John 15:1).  At the bottom right there is a rather strange-looking image of a figure with three faces but just four eyes).  This is a depiction of the Holy Trinity: God being simultaneously three persons and one.  It is also the image, of those I have chosen to depict, closest in style to traditional Orthodox icons.

Bucharest_glass_icons_#2

More icons on glass from the Art Collections Museum in Bucharest.

It is hard for a modern viewer, steeped in the visual culture of the 20thand 21stcenturies, to appreciate the impact of these images.  These were produced at a time when painters in western Europe were preoccupied with realism and capturing the dynamism of the world around them.   These are pared-back, almost cartoon-like depictions.  On the one hand, they are folk art, produced by artists without formal training; yet, at the same time, they are depicting such familiar subjects (for the audiences) that a suggestion of the subject matter is all that is needed.  Icons on the wall of a gallery are divorced from their context and analysing them in terms of visual representation does not do them justice. Icons in a church or in the home of an Orthodox believer are catalysts to deep spiritual experiences and can achieve this without sophisticated painting techniques.   Jesus, in Matthew’s Gospel, says we have to “become like children” (18:3) and, remembering how cartoons were able to draw me into imaginative worlds when I was young, perhaps it should not be a surprise that such apparently simple images make effective icons.

 

Algae from the Alto Duoro …

From the highlands of Serra da Estrela w headed north-west towards the vineyards of the Duoro Valley from which the grapes that make port are picked.  I’m supposed to be on holiday but, as the narrow road twists and turns down a steep hillside, with vineyards on both sides, I see a case study in how humans alter rivers and their catchments to suit their needs.  I wonder if the passengers on the cruise ships that move sedately through this beautiful landscape have any idea of just how difficult this same journey would have been just fifty years ago.   Now there are 51 large dams within the watershed, regulating the flow and, at the same time, generating much-needed hydroelectricity.   Before these were in place, the only way to get the port from the quintas in the Alto Duoro to Porto was to load the barrels onto a “barco rabelo”, and then to plot a perilous path through the rapids before using a combination of sail, oars and oxen to make the slow journey back upstream (you can see videos of these journeys on YouTube).

A replica of a barco rabelo moored in the Rio Duoro at Porto, September 2018.

The Rio Douro is a type of river that is rare in the UK but very common throughout the rest of Europe in that it crosses (and, for part of its course, forms) national boundaries.  There are a few rivers in Ireland which straddle borders (the Foyle is one, and some of the headwaters of the Shannon can be found in County Fermanagh) but, mostly, this is a complication that our river managers do not have to face.  By contrast, eighty per cent of the Rio Douro’s catchment lies in Spain (where it is called the Duero) and it is actually the largest watershed on the Iberian Peninsula.   The whole European project, and its environmental policy in particular, makes so much more sense when you are looking at a well-travelled river.

Our immediate objective was the Quinta do Bomfin at Pinhão, which produces grapes for Cockburns’, Dow’s and Taylor’s ports.  However, after a morning walking through the vineyards and following a tour of the winery (the robot that has replaced human grape treaders has, we learned, been carefully calibrated to match the pressure that a human foot exerts, lest the grape seeds are crushed, imparting bitterness to the resulting wine) plus some port tasting, the lure of the river was too strong.

A view across the Douro Valley from Quinta do Bomfin at Pinhão.   This, and the previous two photographs, were taken by Heather Kelly.

The river bank at Pinhão is lined with rip rap (loose stones) enclosed in mesh cages to protect it from erosion from the waves created by the many cruise ships that make their way up the river with tourists.   This, along with the floating jetties at which they embark and disembark, meant that it was not easy to get access to the river; however, I eventually found a small slipway close to the point where a small tributary joins.  There were a few loose stones with a green film in shallow water that I could just reach, plus some algal mats coating the concrete of the slipway at water level.   I managed to get small samples of each to bring back for closer examination, attracting the usual curious stares from passers-by in the process.

The mats on the slipway were composed of an alga (technically, a cyanobacterium) that has featured in this blog on several occasions in the past: Phormidium autumnale (see “In which the spirit of Jeremy Clarkson is evoked”).   This is the time of year when the Douro is at its lowest so living at this point on the slipway means that it spends a small part of the year exposed to the air, but most of it submerged.

Phormidium cf autumnale on a slipway beside the Rio Douro at Pinhão, September 2018.  The left hand image shows the mats on the lower part of the slipway; the right hand image shows individual filaments.  Scale bar: 20 micrometres (= 1/50th of a millimetre).

The stones beside the slipway had a thick greenish film which, when I looked at it under a microscope, turned out to consist largely of bundles of thin cyanobacterial filaments belonging to a relative of Phormidium: Homoeothrix janthina (kindly identified for me by Brian Whitton).   Homoeothrix differs from Phormidium in that the filament are often slightly tapered, rather than straight-sided and usually aggregated into colonies, often growing vertically towards the light rather than intertwined to form mats.   It is a genus that I see in the UK (including, sometimes, in the River Wear) but which I have not previously written about on this blog.   The photos below show tufts of filaments but it would be quite easy to imagine several of these clumps joined together to form a hemispherical colony, before I disrupted them with my vigorous sampling technique.

Left: the rip rap at the edge of the Douro at Pinhão from which I sampled algae in September 2018; right: the stone after vigorous brushing with a toothbrush.

Bundles of filaments of Homoethrix janthina from the River Douro at Pinhão. Scale bar: 20 micrometres (= 1/50th of a millimetre).

Many of my posts try to make the link between the algae that I find in lakes and rivers and physical and human factors in those water bodies and their surroundings.  That is not an easy task in a large river basin such as that of the Douro as there is so much more of a hinterland including large towns in Spain such as Valladolid.   The river, to some extent, integrates all of these influences and, whereas the vines around Pinhão have their roots in nutrient-poor granite and schist soils, the river’s journey to this point has covered a range of different rock types, including chalky clay soils in the Spanish part of the catchment and the water reflect this.   This cocktail of physical alteration and pollution, shaken up with a dash of international relations, recurs in the largest rivers throughout Europe and is either a fascinating challenge for an ecologist or a complete pain in the backside, depending on your point of view.

I’ll come back to the Douro in a few weeks, once I’ve had a chance to have a closer look at the diatoms.  Meanwhile, I have one more stop on my travels along the Rio Douro, at the port lodges of Vila Nova de Gaia to try some vintage port …

Reference

Bordalo, A.A., Teixeira, R. & Wiebe, W.J. (2006).  A water quality index applied to an international shared river basin: the case of the Douro River.  Environmental Management 38: 910-920.

The end of the journey: port maturing in barrels at Cockburn’s lodge in Vila Nova de Gaia.

 

Notes from the Serra de Estrela

At the end of my last post I suggested that the next time I wrote it may be from Portugal.   In reality, tiredness and, to be frank, a steady consumption of Vino Verde intervened and this post may be about Portugal but is not, alas, written from that country.   Our travels took us from Lisbon northwards to Covilhã, a town on the edge of the Serra da Estrela mountain range, then onwards to the Duoro valley and Porto, and finally back to Lisbon.   The lower part of the Duoro is the home to many of the Vino Verde vineyards, although our focus was mostly on the vineyards further upstream from which the grapes for port are grown.  I’ll write more about the Duoro in a later post but, first, I want to take you on a journey to the Serra da Estrela.

These are the highest mountains in mainland Portugal (there is a higher point in the Azores) with a summit at 1993 metres at Torre.  Unusually, for the highest peak in a mountain range, there is a road all the way to the top, along with a couple of shops and a small bar/restaurant.   On the day we visited, a couple of hardy cyclists had toiled their way up from the plains but most of the visitors had driven up.   We had stopped on our route up from Covilhã to explore the granite landscape and botanise so felt that we had earned our bica and Pastéis de Nata by the time we got to the very top.

Much as I appreciate a summit that satisfies a caffeine addiction, the real interest lies elsewhere, with the road up from Covilhã passing through some dramatically-eroded granite outcrops, composed of huge boulders apparently perched precariously on top of each other.  These resemble the granite “tors” we find in Dartmoor in south-west England, and have a similar origin.   The area around the tors had distinctive vegetation that will, no doubt, be described in greater length in a post on Heather’s blog before too long.   The free-draining sandy soils that the granite landscape creates mean that there was not a lot of surface water for me to indulge my own passions, so I will have to take you to another part of the Serra da Estrela for the remainder of this post.

Granite landscapes near Torre in the Serra da Estrela Natural Park in northern Portugal, September 2018.  

We found an inviting stream as we were walking near Unhais de Serra, at the southern end of the Natural Park.  The first plants to catch our eye were a submerged Ranunculus species with finely-divided leaves and five-petelled white flowers sitting at the water surface.   As well as these, we could see shoots of patches of water dropwort (Oenanthe sp.) and, looking more closely, several of these appeared to be growing out of dark coloured patches which turned out to be a submerged moss overgrown with algae (more about which a little later).   I am guessing that, once the rains come, much of these mini-ecosystems will be washed downstream leaving just a few moss stems to be colonised again next year.

Submerged vegetation in the stream at Unhais de Serra in September 2018 (40°15’44” N 7°37’21” W).  The top photograph shows a Ranunculus species and the lower photograph shows mosses overgrown with algae (a mixture of Cyanobacterial filaments, diatoms and coccoid green algae), within which young plants of Oenanthe sp. have taken root (top photograph: Heather Kelly).

Somewhat to my surprise there were also some patches of Lemanea.   This is a red algal genus that I usually associate with late winter and spring in my own part of the world, so I had not expected to find such prolific growths at this time of year at lower latitudes.   Maybe Iberian species of Lemanea behave differently to those with which I am familiar?

The Lemanea species found in the stream at Unhais de Serra in September 2018.  The top photograph shows it growing in situ and the lower photograph is a close-up.  The filaments are about a millimetre wide.

The dark film itself contained a variety of algae, some of which I have put in a plate below.   There were some cyanobacterial filaments which looked like Oscillatoria to me but which were not moving (their life between collection and examination was less than ideal).  There were also a large number of diatoms, mostly Navicula and Surirella.  Again, both would have been moving around in a healthy sample but were static when I got around to examining them; the chloroplasts in the Surirella, in particular, were not in very good condition).  I also saw some chains of Fragilaria species and several small green algae (especially Monoraphidium, discussed in the previous post).  I’ll return to the diatoms in a future post, once I have been able to get permanent slides prepared and examined but first impression is that I am looking at a community from a low nutrient, circumneutral environment.

Some of the algae living in the dark films overgrowing mosses in the stream at Unhais de Serra in September 2018.   a. – c.: Navicula angusta; d. –g. Surirella cf. roba; h. – i. two different chain-forming Fragilaria sp.; j. – k.: Navicula cf cryptocephala; l. – m.: Oscillatoria sp.    Scale bar: 20 micrometres (= 1/50th of a millimetre). 

The diatoms, in particular, reiterate the important point that notwithstanding the huge number of new species that have been described in recent years, it is possible to peer through a microscope at a sample from anywhere in Europe and see a familiar set of outlines that, for the most part, give a consistent interpretation of environmental conditions wherever you are (see, for example, “Lago di Maggiore under the microscope”).   That same rationale applies, to some extent to other organism groups too: we have recently shown this for macrophytes in shallow lakes for example.   Likewise, the geology here was shaped by the same broad forces that created the landscape of south-west England even if local climate means that the flora surrounding the tors in the Serra da Estrela is adapted to more arid conditions than that on Dartmoor.    It is important that, when we travel, we see the differences but, perhaps even more important in this fractured age, that we see the similarities too.

References

Chapuis, I.S., Sánchez-Castillo, P.M. & Aboal Sanchero, M. (2014).  Checklist of freshwater red algae in the Iberian Penisula and the Balearic Islands.   Nova Hedwigia 98: 213-232.

Poikane, S., Portielje, R., Deny, L., Elferts, D., Kelly, M., Kolada, A., Mäemets, H., Phillips, G., Søndergaard, M., Willby, N. & van den Berg, M. (2018).   Macrophyte assessment in European lakes: Diverse approaches but convergent views of ‘good’ ecological status.  Ecological Indicators 94: 185-197.

Return to Cyprus …

A few weeks ago I described some of the algae that I found during a visit to the Avgás Gorge (pictured above) in Cyprus, including a chain-forming Ulnaria (see “Cypriot delights …”).   I’ve now had a chance to prepare cleaned valves from this material so we can take a closer look.

The chain-forming habit had already led David Williams to suggest Ulnaria ungeriana (Grunow) Compère 2001 and more detailed observations have confirmed this.  This is a species that was actually first described from Cyprus (actually Northern Cyprus) and it was also recorded quite extensively during a survey of the island’s diatoms a few years ago.   Unfortunately, some of the key diagnostic characters – such as small marginal spines and striae composed of single rows of pores – cannot be seen with light microscopy but the former, at least, can be inferred from the chain-forming habit.   Note, too, how the long chains that dominated the population in the live state, fell apart when the sample was cleaned with oxidising agents and I did not see more than three cells joined together in the new preparation.

Ulnaria ungeriana from Avgás Gorge, Cyprus, April 2018.   Scale bar: 10 micrometres (= 1/100th of a millimetre).

The Ulnaria ungeriana cells are mostly about 100 – 150 mm long and 7-8 mm wide, with a striae density of 9-10 / 10 mm.   They have parallel sides, narrowing to rostrate to slightly sub-capitate ends, and central areas that reach to the valve margin and which are slightly longer than they are broad.   Unfortunately, most of these characteristics overlap with those of Ulnaria ulna in all but most recent identification guides.   This species was first described by Nitzsch in 1817; it would have been one of the more conspicuous diatoms visible with the relatively basic equipment available at the time, with a magnification of about 150x.  His drawings are of live cells, mostly in girdle view, which means that many of the details which modern diatomists use to discriminate species are not apparent.   Moreover, the material on which these drawings are based is no longer available so we cannot go back to this in order to ascertain the characteristics of the original Ulnaria ulna and, to increase the confusion yet further, it is possible that Nitzsch has illustrated more than one species (see the reference by Lange-Bertalot and Ulrich below).

It would be, in short, very easy to look at a population of Ulnaria ungeriana in the cleaned state and match it to the descriptions of Ulnaria ulna which, under various names, have appeared in the identification literature over the past 100 years or so.   You might just detect the small marginal spines if you have a good microscope and know what you are looking for.  In the live state, however, the ribbon-like colonies are a very distinctive feature yet these do not survive preparation, putting anyone who only encounters this species on a permanent slide at a distinct disadvantage.   It is a good example of how examination of live material can add valuable information to an understanding of a diatom species yet, inevitably, many diatomists make little time for examination of their samples before dropping them into their bubbling cauldrons of oxidising agents.

High magnification views of the ends and central portions of Ulnaria ungeriana valves.   Scale bar: 10 micrometres (= 1/100th of a millimetre). 

What do we know about the ecology of Ulnaria ungeriana?   Our survey of Cypriot streams a few years ago yielded 11 records, forming up to four percent of all diatoms in the sample.  This means it is both less widespread and less dominant in samples than some other Ulnaria species.   It was often found along with other Ulnaria species, in particular U. mondii and, though generally not associated with reference sites (one out of the 11 records), it was mostly found in relatively clean conditions.   It was also associated with sites with high conductivity, which corresponds with the limestone geology that we saw in the Avgás Gorge.   On the whole, these environmental preferences are similar to those of other Ulnaria species from Cyprus that we’ve studied (see reference in earlier post).

The last question is perhaps the hardest to answer.  What benefit does the chain-forming habit confer upon Ulnaria ungeriana?   Ulnaria often forms tufts of upright cells sharing a common pad of mucilage at the base, and it is often (but not exclusively) found as an epiphyte on other plants.   We can’t rule out the possibility that the Ulnaria ungeriana chains are not also attached at one end, but it is also possible that the chain-forming habit means that they are easily entangled with the Chara and filamentous green algae that I described in the earlier post.   Both mucilage pads and entangled chains fulfil the same role of keeping the alga in the same spot in the stream, particularly where there are other plants and filamentous algae to offer extra protection from the current.

There is some speculation in the final couple of sentences but that’s never a bad thing for an ecologist.  If nothing else, it provides me with a reason to return one day …

Ecological preferences of Ulnaria ungeriana at running water sites in Cyprus.  a. pH; b. conductivity; c. total nitrogen (TN) and d. total phosphorus (TP).  Arrows indicate the mean value for each variable, weighted by the relative abundance of Ulnaria ungeriana in the sample.

Reference

Krammer, K. & Lange-Bertalot, H. (1991).   Süsswasserflora von Mitteleuropa 2 Bacillariophyceae, 3 teil: Centrales, Fragilariaceae, Eunotiaceae.   Spektrum Akademischer Verlag, Heidelberg, Berlin.

Lange-Bertalot, H. & Ulrich, S. (2014).  Contributions to the taxonomy of needle-shaped Fragilaria and Ulnaria species.   Lauterbornia 78: 1-73.