A reasonable excuse for exercise ..

High_Mill_falls_Apr2020A redefinition of the travel restrictions hereabouts means that “driving to the countryside and walking (where far more time is spent walking than driving)” it is now “likely to be reasonable” within the terms of Regulation 6 of the The Health Protection (Coronavirus, Restrictions) (England) Regulations 2020. That means that, rather than plan another post about the fascinating ecology of Lough Down, I can look a little further afield.   As both Heather and I are writing chapters for a forthcoming book on the Natural History of Weardale, we turned our eyes to the hills, largely for exercise and a change of scenery, but also as part of our background research for these chapters.

We parked the car at Westgate and followed a path alongside Middlehope Burn, a tributary of the Wear with a long history of lead mining and, as such, a case study in how man has shaped the ecology of Weardale, both terrestrial (Heather’s domain) and aquatic.  The first part of the walk is through Slitt Wood, where the stream cascades over a series of low step-like waterfalls, alternately sandstone and limestone, illustrating the bedrock geology of the area.   The air is full of birdsong and there are patches of primroses feasting greedily on the light that is still plentiful on the forest floor at this time of year.   However, this idyll is short-lived as, passing through a gate we emerge into a grassed area surrounded by derelict mine buildings.  Early on a Saturday morning in the midst of the pandemic, we have the place to ourselves and it is a struggle to imagine this place as a busy industrial site.   Similar sites are scattered throughout Weardale and the surrounding dales; all are now closed but once they would have employed large numbers of people.  There would have been the miners, working underground, of course, but also gangs of people (including women and children) breaking down and sorting the ore as it was brought to the surface, plus ancillary workers involved in construction, both above and below ground.

A couple of hundred metres beyond the site of the main shaft at Slitt Mine, I spot an adit (a shaft driven horizontally into a hillside) and make my way towards it.  These are intriguing habitats for ecologists interested in the interactions between man and nature and I was intrigued to see what was growing in this one, White’s Level.  The mine’s levels and shafts act as natural drainage channels, collecting water that has percolated through the rocks but, because the miners have driven the levels along the mineral veins, the water comes into contact with lead, zinc and cadmium during the course of its underground journeys, emerging with concentrations far in excess of those deemed safe by toxicologists.  However, the channel immediately downstream of the entrance of White’s Level was lush with vegetation.   I could see thick wefts of filamentous algae giving way to beds of water-cress (Rorippa nasturtium-aquaticum) and bog pondweed (Potamogeton polygonifolius).  The latter two were surprising as, in my experience, most of the streams draining north Pennine adits are dominated by algae rather than by higher plants.

Whites_Level_April20

The stream flowing from White’s Level to Middlehope Burn, April 2020.  The left-hand image shows the beds of water-cress very clearly whilst the right hand image shows the filamentous algae growths immediately below the entrance.   The picture at the top of the post shows Middlehope Burn at High Mill Falls, just upstream from Westgate.

The water cress had a distinctive purplish tinge which is probably a response to stress.  We’ve encountered this type of colour-change in response to stress elsewhere (see “Escape to Southwold”).   In this post, and in “Good vibrations under the Suffolk sun …” I talked about how plants have to regulate the amount of energy from sunlight in order that their internal photosynthetic machinery is not overwhelmed.  Those posts were both written after a hot weekend in July, but this was a chilly and overcast April morning in the Pennines where the prospect of plant cells being overcome by heat seems faintly ludicrous.   Here, instead, is my alternative hypothesis.

Although White’s Level and the other mines in the northern Pennines were driven by the demand for lead, lead is a relatively insoluble element and zinc, which is found alongside the lead in the metal-rich veins of the northern Pennines, is more soluble and, therefore, has a greater toxic influence on the plants and animals in these streams.  Zinc affects the metabolism of plants in several ways, one of the most important of which is to reduce the effectiveness of the chlorophyll molecules which are responsible for photosynthesis.  It does this by nudging the magnesium atom, which lies at the heart of every chlorophyll molecule, out of place.

Whites_Level_macrophytes_Apr20

Macrophytes in the stream flowing from White’s Level to Middlehope Burn, April 2020.   Left: Potamogeton polygonifolius; right: Rorippa nasturtium-aquaticum.

What this does, then, is alter the balance of the equation that tries to balance energy inputs and photosynthesis.   If your chlorophyll molecules are hobbling along, then the point at which they are overwhelmed by even the meagre Pennine sunlight shifts so that  the need for the plants to manufacture their on-board sunscreen kicks in sooner.   Just a hypothesis, as I said: if you have a better explanation, please let me know.

A few hundred metres further on, there is another lush growth of water cress in the stream flowing out of another adit, Governor and Company Level, this time even extending beyond the metal grille designed to keep the curious from harm.  I most associate watercress farms with the headwaters of chalk stream, which are characteristically spring-fed and, therefore, have very stable conditions.   The adits of the northern Pennines are, this respect, very similar to springs insofar as their flow, temperature and chemical conditions vary little over the course of a year.   In that respect, it is perhaps less of a surprise that we find water cress growing so prolifically here.   The zinc, admittedly, is a complication we don’t find in most springs but, that apart, the adits could be thought of as man-made springs, creating a series of almost unique, but largely overlooked habitats.

In the next post, I’ll talk about the algae that I found in the White’s Level channel.

Governor_Company_Level_Apr20

A prolific growth of water cress in the drainage channel below Governor and Company Level, April 2020. 

Some other highlights from this week:

Wrote this whilst listening to: Still working through Dylan’s back catalogue: John Wesley Harding, , Nashville Skyline and Self-Portrait, the latter a blip in an otherwise superb run of albums.   Next up is New Morning but I want to re-read the chapter in Dylan’s Chronicles Volume One where he describes the genesis of this album before listening.

Cultural highlights:  My book group looked at Pride and Prejudice but, being deep into The Mirror and The Light, I did not had time to read this.   We watched the 2005 film version starring Kiera Knightly instead.   Turned out that three of the six participants in the book group had also watched the film the night before our Zoom meeting, rather than (re-)reading the book itself.

Currently reading:  Finally finished The Mirror and The Light which was, definitely, worth the effort.  Started Kate Atkinson’s Big Sky.

Culinary highlight:   Home-made tortellini filled with mushroom paté, served with a consommé made from turkey stock from the freezer.  Culinary ambition hereabouts always goes sky high in the week of the MasterChef finals.

More about Gomphonema vibrio

Gomphonema vibrio is part of a complex of species that has only begun to be unravelled in the past few years.   In the first edition of the Süsswasserflora von Mitteleuropa in 1930, Hustedt included it as one of three varieties of G. intricatum, along with G. pumilum and G. dichotum.  By the time of the second edition (1986), however, Krammer and Lange-Bertalot had subsumed G. intricatum into G. angustum, creating a single species that spanned an enormous range of size (see their Plate 164 if you don’t believe me).   A few years later they revised this opinion, and unpicked the G. angustum complex, reinstating several of the taxa that they had originally subsumed and also recognising some more recently described species (many by Erin Reichardt).   There may well be more changes to come as this group has not yet been subjected to critical study by molecular geneticists.

One of the other species in this melange is Gomphonema pumilum, a much smaller diatom that is common in both running and standing waters (Hustedt’s comment on the species complex only referred to a preference for “stagnant waters”).   We have met it a few times previously (see, for example, “Pleasures in my own backyard”) and I also found it in a 1999 sample from Croft Kettle whilst searching for G. vibrio.   However, I then turned to an older slide, based on a sample collected in 1872 and given to me by John Carter (see “Remembering John Carter”).   This had some cells of G. pumilum but also some that exceeded the quoted dimensions for G. pumilum (length: 12 – 36 mm; width: 3.5 – 5.5 mm) and which fell within the size range for G. vibrio.   I suspect that we are, in fact, dealing with a mixture of the two species and if this is a common situation then it may explain why Hustedt had difficulties unpicking the two species.   When I arranged the images of G. vibrio and G. pumilum that I found in this sample in order of diminishing size, there is a continuum between the two forms.  We now know that width is a better discriminator than length and, armed with this, we can see a difference between the two species. But that is one of the benefits of hindsight.

Gomphonema pumilum from Croft Kettle, May 1999.  a. – e.: valve views; f., g.: girdle views.   Scale bar: 10 micrometres (= 100th of a millimetre).

Gomphonema vibrio (h. – k.) and G. pumilum (l. – m. [and n.?]) from “Hell Kettles”, 1872.  Scale bar: 10 micrometres (= 100th of a millimetre).

This raises a question about the reliability of the size ranges quoted in the literature   A couple of the smaller valves of G. vibrio were less than 7 mm wide.  Yet, in other respects, they were more similar to the “true” G. vibrio valves than to those of G. pumilum.  The answer will vary from species to species but, as a general rule, we should not be too bothered if the extremes of a population stray a little beyond the values quoted in the literature.   These are usually based on the largest and smallest cells found in a thorough scan of one or more populations, but not necessarily on observations of an initial cell (the largest in a population) or of cells at the point immediately before sexual reproduction is initiated (the smallest).  We simply don’t have that information for most species so, as a result, should be prepared to accept larger and smaller valves into a species if they are qualitatively similar to, and quantitatively part of a continuum with, the rest of the population.  My post “Diatoms and the Space-Time Continuum”, also on Gomphonema, offers some further insights into this story.

Reference

Hustedt, F. (1930).  Susswasserflora von Mitteleuropa 10: Bacillariophyceae.  Gustav Fischer, Jena.

Krammer, K. & Lange-Bertalot, H. (1986). Susswasserflora von Mitteleuropa 2: Bacillariophyceae. 1 Teil: Naviculaceae.  Spektrum Akademischer Verlag, Heidelberg.

Krammer, K. & Lange-Bertalot, H. (1991). Susswasserflora von Mitteleuropa 2: Bacillariophyceae. 4 Teil: Achnanthaceae. Kritische Ergänzungen zu Achnanthes s.l., Navicula s.str., Gomphonema. Spektrum Akademischer Verlag, Heidelberg.

Reichardt, E. (1997).  Taxonomische revision des Artencomplexes um Gomphonema pumilum (Bacillariophyceae).  Nova Hedwigia 65: 99-129.

Reichardt, E. & Lange-Bertalot, H. (1991).  Taxonomische revision des Artencomplexes um Gomphonema angustum – G. intricatum – G. vibrio und ähnliche taxa (Bacillariophyceae).  Nova Hedwigia 53: 519-544.

Note

In my post on Gomphonema rhombicum, I mentioned that the location on the type slide is given as “Appleby”, which was not very precise.   My 1872 slide is labelled “Hell Kettles, Durham”.  “Hell Kettles” is the name for the pair of ponds, of which Croft Kettle, which I described in my earlier post, is the larger.   However, the location “Durham” is not very illuminating.   The closest town to Croft Kettle is Darlington, whilst Durham City is 40 km to the north.   “Durham”, in this context, could refer to the county, which covers 2721 square kilometres and habitats from calcareous ponds such as these to moorland pools.   A slide label offers very little space to give precise details of location but, in both these cases, a little more information would be useful.   The likelihood is that Firth had more detailed notes elsewhere but these have been lost over time, so we are left with these scant words.   There is a lesson here for all of us in how we record the meta-data that accompanies our samples.

Rolling stones gather no moss …

Back in early July I mused on how rivers changed over time (see “Where’s the Wear’s weir?”) and reflected on how this shapes our expectations about the plants and animals that we find.  In that post, I compared a view of the River Tees today with the same view as captured by J.R.W Turner at the end of the 18th century.   The photograph above is taken about 40 kilometres further upstream from Egglestone Abbey and shows the River Tees as it tumbles along in a narrow valley between Falcon Clints and Cronkley Scar.   I’ve written about this stretch of river before (see “The intricate ecology of green slime” and “More from Upper Teesdale”) and it is an idyllic stretch.   It all looks, to the uninitiated, very natural, almost untouched by the hand of man.

However, a couple of kilometres beyond this point we turn a corner and are confronted by a high waterfall, Cauldron Snout, formed where the river cascades over the hard Whin Sill.   Scrambling up the blocky dolerite is not difficult so long as you have a head for heights but, on reaching the top, a wall of concrete comes into view.  This is the dam of Cow Green Reservoir, constructed between 1967 and 1971 and highly controversial at the time.  The purpose of the reservoir was to regulate the flow in the River Tees, in particular ensuring that there was sufficient flow in the summer to ensure a steady supply for the industries of Teeside (most of which have, subsequently, closed).  My first visit to Cauldron Snout was in the early 1980s on a Northern Naturalist Union field excursion led by David Bellamy.  As we scrambled down Cauldron Snout, Tom Dunn, an elderly stalwart of the NNU, told me how much more impressive Cauldron Snout had been before the dam was closed.

Now look back at the picture at the top of this post.   The dark patches on the tops of the boulders emerging from the water are growths of the moss Schistidium rivulare, which thrives on the tops of stable boulders that are occasionally submerged.    The old adage “a rolling stone gathers no moss” is, actually, true, leaving me wondering how much less of this moss an walker beside this river in the mid-1960s might have seen.   How many more powerful surges of storm-fuelled water would have there been to overturn the larger boulders on which Schistidium rivulare depends?   Bear in mind, too, that two major tributaries, the Rivers Balder and Lune, also have flow regimes modified by reservoirs and the potential for subtle alteration of the view that Turner saw at Egglestone increases.   I wrote recently about how differences in hydrological regime can affect the types and quantities of algae that are found (see “A tale of two diatoms …”).   I may have stood at exactly the same place where Turner had sat when he drew the scene at Egglestone, but I was looking at a very different river.

The dam of Cow Green Reservoir looming above the top of Cauldron Snout in Upper Teesdale National Nature Reserve, Co. Durham, July 2017.  The picture at the top of this post shows the Tees a couple of kilometres downstream from Cauldron Snout.

Trevor Crisp from the Freshwater Biological Association showed that the consequences of Cow Green Reservoir on the River Tees extend beyond alterations to the flow.  Impounding a huge quantity of water in one of the coolest parts of the country also affects the temperature of the river, due to water’s high specific heat capacity.  This means that there is not just a narrower range of flows, but also a narrower range of temperature recorded.   The difference between coolest and warmest temperatures in the Tees below Cow Green dropped by 1 – 2 °C, which may not seem a lot, but one consequence is to delay the warming of the river water in Spring by about a month, which delays the development of young trout.  However, Crisp and colleagues went on to show that any reduction in growth rate due to lower temperatures was actually offset by other side-effects of the dam (such as a less harsh flow regime) to result in an increase in the total density of fish downstream.   Others have shown significant shifts in the types of invertebrate that he found in the Tees below Cow Green, with a decrease in taxa that are adapted to a harsh hydrological regime, as might be expected.   Maize Beck, a tributary which joins just below Cauldron Snout, and which has a natural flow regime, shows many fewer changes.

One conclusion that we can draw from all this is that healthy ecosystems such as the upper Tees are fairly resilient and can generally adapt to a certain amount of change, as Trevor Crisp’s work on the fish shows us. The big caveat on this is that the upper Tees is relatively unusual in having no natural salmon populations, as the waterfall at High Force presents a natural obstacle to migration.  Had this not been present, then all potential spawning grounds upstream of the reservoir would have been lost.   A second caveat is that there is still a lot that we do not know.   The studies of the river that followed the closure of the dam focussed on lists of the animal and plant species found; a modern ecologist might have put more effort into understanding the consequences for ecological processes, the “verbs” in ecosystems, rather than in the “nouns”.  Who knows how different energy pathways are now, compared to the days before regulation, and what the long-term consequences of such changes might be?  Schistidium rivulare is a good example of the limitations of our knowledge: its presence offers insights into the hydrology of the river, but we know relatively little about the roles that these semi-aquatic mosses play in the river ecosystem.   Knowing that there is much that we do not know should, at least, keep us humble as we struggle to find the balance between preserving natural landscapes and their sustainable use in the future.

Note

Twenty years ago, I would have recognised Schistidium rivulare, if not in the field, then at least after a quick check under the microscope.  Now, however, my moss identification skills are rusty and I had to turn to Pauline Lang to get this moss named.   I mentioned in “The Stresses of Summertime …” how the ecologist’s niche becomes the office not the field.  One danger is that we remain familiar with names (as I am with S. rivulare and other aquatic mosses) but, through lack of practice, lose the craft that connects those names to the living organisms.

References

Armitage, P.D. (2006).   Long-term faunal changes in a regulated and an unregulated stream – Cow Green thirty years on.  River Research and Applications 22: 957-966.

Crisp, D.T. (1973).  Some physical and chemical effects of the Cow Green (upper Teesdale) impoundment.  Freshwater Biology 7: 109-120.

Crisp, D.T., Mann, R.H.K. & Cubby, P.R. (1983).  Effects of regulation on the River Tees upon fish populations below Cow Green Reservoir.  Journal of Applied Ecology 20: 371-386.

Lang, P.D. & Murphy, K.J. (2012).  Environmental drivers, life strategies and bioindicator capacity of bryophyte communities in high-latitude headwater streams.  Hydrobiologia 612: 1-17.

No excuse for not swimming …

Lyons_lake_Hetton-le-Hole

Lyon’s Lake, Hetton-le-Hole, County Durham, May 2015.

After my sojourns in the Lake District and Latvia, I find myself back home in north-east England for a few days.   Whilst I was away, a small packet had arrived in the post, containing a sample of algae collected from a local lake. The bottles contained globules of bright green jelly-like material, with enough integrity to pick up with the fingers and they were intriguing enough for me to drive across one lunchtime to take a closer look at the lake where they came from.

Hetton Lyons Country Park is on the Permian Limestone plateau about 10 kilometres from where I live. It is on the site of a former colliery which closed in 1960 and the surrounding land has been reclaimed and partially converted to a country park.   The lake – probably a hectare or so in size – is used for angling and water sports, and the paths around the edge were busy with cyclists and dog-walkers.   It is on the edge of Hetton-le-Hole, a small town whose odd name refers to its location in one of the more sheltered parts of the plateau.

Aphanothece_stagnina_Hetton

A mucilaginous colony of Aphanothece stagnina (left) with (right) a microscopic view of the individual cyanobacterial cells embedded in mucilage. Scale bar: 25 micrometres (= 1/40th of a millimetre).

There were plenty of green algae around the margins of the shallow lake but, amidst this in a few locations, I could also see the small globules of the alga resting on the bottom which, like the colonies I had been sent, could easily be picked –up.    Under the microscope, these resolved into tiny cyanobacterial cells, mostly oval in outline and about five micrometres in diameter.   These belong to Aphanothece stagnina, a relative of the Gloeocapsa alpina, which we have seen in two other recent posts (see “The mysteries of Clapham Junction” and “Poking around amongst sheep’s droppings …”), albeit in very different habitats.

The word “cyanobacteria” alone is usually enough to make the manager of a recreational lake break out in a sweat.   Many cyanobacteria produce toxins that can affect the nervous system and the liver. This means that no contact water sports (swimming and canoeing, for example) can take place and dog-owners have to be warned not to let their pets drink from the water.   However, as far as I can tell from a brief search on the internet, Aphanothece is not a genus that is often reported in association with toxic blooms.   One less excuse, then, not to go wild swimming in a lake in north-east England on a breezy May afternoon …