More about Gomphonema vibrio

Gomphonema vibrio is part of a complex of species that has only begun to be unravelled in the past few years.   In the first edition of the Süsswasserflora von Mitteleuropa in 1930, Hustedt included it as one of three varieties of G. intricatum, along with G. pumilum and G. dichotum.  By the time of the second edition (1986), however, Krammer and Lange-Bertalot had subsumed G. intricatum into G. angustum, creating a single species that spanned an enormous range of size (see their Plate 164 if you don’t believe me).   A few years later they revised this opinion, and unpicked the G. angustum complex, reinstating several of the taxa that they had originally subsumed and also recognising some more recently described species (many by Erin Reichardt).   There may well be more changes to come as this group has not yet been subjected to critical study by molecular geneticists.

One of the other species in this melange is Gomphonema pumilum, a much smaller diatom that is common in both running and standing waters (Hustedt’s comment on the species complex only referred to a preference for “stagnant waters”).   We have met it a few times previously (see, for example, “Pleasures in my own backyard”) and I also found it in a 1999 sample from Croft Kettle whilst searching for G. vibrio.   However, I then turned to an older slide, based on a sample collected in 1872 and given to me by John Carter (see “Remembering John Carter”).   This had some cells of G. pumilum but also some that exceeded the quoted dimensions for G. pumilum (length: 12 – 36 mm; width: 3.5 – 5.5 mm) and which fell within the size range for G. vibrio.   I suspect that we are, in fact, dealing with a mixture of the two species and if this is a common situation then it may explain why Hustedt had difficulties unpicking the two species.   When I arranged the images of G. vibrio and G. pumilum that I found in this sample in order of diminishing size, there is a continuum between the two forms.  We now know that width is a better discriminator than length and, armed with this, we can see a difference between the two species. But that is one of the benefits of hindsight.

Gomphonema pumilum from Croft Kettle, May 1999.  a. – e.: valve views; f., g.: girdle views.   Scale bar: 10 micrometres (= 100th of a millimetre).

Gomphonema vibrio (h. – k.) and G. pumilum (l. – m. [and n.?]) from “Hell Kettles”, 1872.  Scale bar: 10 micrometres (= 100th of a millimetre).

This raises a question about the reliability of the size ranges quoted in the literature   A couple of the smaller valves of G. vibrio were less than 7 mm wide.  Yet, in other respects, they were more similar to the “true” G. vibrio valves than to those of G. pumilum.  The answer will vary from species to species but, as a general rule, we should not be too bothered if the extremes of a population stray a little beyond the values quoted in the literature.   These are usually based on the largest and smallest cells found in a thorough scan of one or more populations, but not necessarily on observations of an initial cell (the largest in a population) or of cells at the point immediately before sexual reproduction is initiated (the smallest).  We simply don’t have that information for most species so, as a result, should be prepared to accept larger and smaller valves into a species if they are qualitatively similar to, and quantitatively part of a continuum with, the rest of the population.  My post “Diatoms and the Space-Time Continuum”, also on Gomphonema, offers some further insights into this story.

Reference

Hustedt, F. (1930).  Susswasserflora von Mitteleuropa 10: Bacillariophyceae.  Gustav Fischer, Jena.

Krammer, K. & Lange-Bertalot, H. (1986). Susswasserflora von Mitteleuropa 2: Bacillariophyceae. 1 Teil: Naviculaceae.  Spektrum Akademischer Verlag, Heidelberg.

Krammer, K. & Lange-Bertalot, H. (1991). Susswasserflora von Mitteleuropa 2: Bacillariophyceae. 4 Teil: Achnanthaceae. Kritische Ergänzungen zu Achnanthes s.l., Navicula s.str., Gomphonema. Spektrum Akademischer Verlag, Heidelberg.

Reichardt, E. (1997).  Taxonomische revision des Artencomplexes um Gomphonema pumilum (Bacillariophyceae).  Nova Hedwigia 65: 99-129.

Reichardt, E. & Lange-Bertalot, H. (1991).  Taxonomische revision des Artencomplexes um Gomphonema angustum – G. intricatum – G. vibrio und ähnliche taxa (Bacillariophyceae).  Nova Hedwigia 53: 519-544.

Note

In my post on Gomphonema rhombicum, I mentioned that the location on the type slide is given as “Appleby”, which was not very precise.   My 1872 slide is labelled “Hell Kettles, Durham”.  “Hell Kettles” is the name for the pair of ponds, of which Croft Kettle, which I described in my earlier post, is the larger.   However, the location “Durham” is not very illuminating.   The closest town to Croft Kettle is Darlington, whilst Durham City is 40 km to the north.   “Durham”, in this context, could refer to the county, which covers 2721 square kilometres and habitats from calcareous ponds such as these to moorland pools.   A slide label offers very little space to give precise details of location but, in both these cases, a little more information would be useful.   The likelihood is that Firth had more detailed notes elsewhere but these have been lost over time, so we are left with these scant words.   There is a lesson here for all of us in how we record the meta-data that accompanies our samples.

Advertisements

Rolling stones gather no moss …

Back in early July I mused on how rivers changed over time (see “Where’s the Wear’s weir?”) and reflected on how this shapes our expectations about the plants and animals that we find.  In that post, I compared a view of the River Tees today with the same view as captured by J.R.W Turner at the end of the 18th century.   The photograph above is taken about 40 kilometres further upstream from Egglestone Abbey and shows the River Tees as it tumbles along in a narrow valley between Falcon Clints and Cronkley Scar.   I’ve written about this stretch of river before (see “The intricate ecology of green slime” and “More from Upper Teesdale”) and it is an idyllic stretch.   It all looks, to the uninitiated, very natural, almost untouched by the hand of man.

However, a couple of kilometres beyond this point we turn a corner and are confronted by a high waterfall, Cauldron Snout, formed where the river cascades over the hard Whin Sill.   Scrambling up the blocky dolerite is not difficult so long as you have a head for heights but, on reaching the top, a wall of concrete comes into view.  This is the dam of Cow Green Reservoir, constructed between 1967 and 1971 and highly controversial at the time.  The purpose of the reservoir was to regulate the flow in the River Tees, in particular ensuring that there was sufficient flow in the summer to ensure a steady supply for the industries of Teeside (most of which have, subsequently, closed).  My first visit to Cauldron Snout was in the early 1980s on a Northern Naturalist Union field excursion led by David Bellamy.  As we scrambled down Cauldron Snout, Tom Dunn, an elderly stalwart of the NNU, told me how much more impressive Cauldron Snout had been before the dam was closed.

Now look back at the picture at the top of this post.   The dark patches on the tops of the boulders emerging from the water are growths of the moss Schistidium rivulare, which thrives on the tops of stable boulders that are occasionally submerged.    The old adage “a rolling stone gathers no moss” is, actually, true, leaving me wondering how much less of this moss an walker beside this river in the mid-1960s might have seen.   How many more powerful surges of storm-fuelled water would have there been to overturn the larger boulders on which Schistidium rivulare depends?   Bear in mind, too, that two major tributaries, the Rivers Balder and Lune, also have flow regimes modified by reservoirs and the potential for subtle alteration of the view that Turner saw at Egglestone increases.   I wrote recently about how differences in hydrological regime can affect the types and quantities of algae that are found (see “A tale of two diatoms …”).   I may have stood at exactly the same place where Turner had sat when he drew the scene at Egglestone, but I was looking at a very different river.

The dam of Cow Green Reservoir looming above the top of Cauldron Snout in Upper Teesdale National Nature Reserve, Co. Durham, July 2017.  The picture at the top of this post shows the Tees a couple of kilometres downstream from Cauldron Snout.

Trevor Crisp from the Freshwater Biological Association showed that the consequences of Cow Green Reservoir on the River Tees extend beyond alterations to the flow.  Impounding a huge quantity of water in one of the coolest parts of the country also affects the temperature of the river, due to water’s high specific heat capacity.  This means that there is not just a narrower range of flows, but also a narrower range of temperature recorded.   The difference between coolest and warmest temperatures in the Tees below Cow Green dropped by 1 – 2 °C, which may not seem a lot, but one consequence is to delay the warming of the river water in Spring by about a month, which delays the development of young trout.  However, Crisp and colleagues went on to show that any reduction in growth rate due to lower temperatures was actually offset by other side-effects of the dam (such as a less harsh flow regime) to result in an increase in the total density of fish downstream.   Others have shown significant shifts in the types of invertebrate that he found in the Tees below Cow Green, with a decrease in taxa that are adapted to a harsh hydrological regime, as might be expected.   Maize Beck, a tributary which joins just below Cauldron Snout, and which has a natural flow regime, shows many fewer changes.

One conclusion that we can draw from all this is that healthy ecosystems such as the upper Tees are fairly resilient and can generally adapt to a certain amount of change, as Trevor Crisp’s work on the fish shows us. The big caveat on this is that the upper Tees is relatively unusual in having no natural salmon populations, as the waterfall at High Force presents a natural obstacle to migration.  Had this not been present, then all potential spawning grounds upstream of the reservoir would have been lost.   A second caveat is that there is still a lot that we do not know.   The studies of the river that followed the closure of the dam focussed on lists of the animal and plant species found; a modern ecologist might have put more effort into understanding the consequences for ecological processes, the “verbs” in ecosystems, rather than in the “nouns”.  Who knows how different energy pathways are now, compared to the days before regulation, and what the long-term consequences of such changes might be?  Schistidium rivulare is a good example of the limitations of our knowledge: its presence offers insights into the hydrology of the river, but we know relatively little about the roles that these semi-aquatic mosses play in the river ecosystem.   Knowing that there is much that we do not know should, at least, keep us humble as we struggle to find the balance between preserving natural landscapes and their sustainable use in the future.

Note

Twenty years ago, I would have recognised Schistidium rivulare, if not in the field, then at least after a quick check under the microscope.  Now, however, my moss identification skills are rusty and I had to turn to Pauline Lang to get this moss named.   I mentioned in “The Stresses of Summertime …” how the ecologist’s niche becomes the office not the field.  One danger is that we remain familiar with names (as I am with S. rivulare and other aquatic mosses) but, through lack of practice, lose the craft that connects those names to the living organisms.

References

Armitage, P.D. (2006).   Long-term faunal changes in a regulated and an unregulated stream – Cow Green thirty years on.  River Research and Applications 22: 957-966.

Crisp, D.T. (1973).  Some physical and chemical effects of the Cow Green (upper Teesdale) impoundment.  Freshwater Biology 7: 109-120.

Crisp, D.T., Mann, R.H.K. & Cubby, P.R. (1983).  Effects of regulation on the River Tees upon fish populations below Cow Green Reservoir.  Journal of Applied Ecology 20: 371-386.

Lang, P.D. & Murphy, K.J. (2012).  Environmental drivers, life strategies and bioindicator capacity of bryophyte communities in high-latitude headwater streams.  Hydrobiologia 612: 1-17.

No excuse for not swimming …

Lyons_lake_Hetton-le-Hole

Lyon’s Lake, Hetton-le-Hole, County Durham, May 2015.

After my sojourns in the Lake District and Latvia, I find myself back home in north-east England for a few days.   Whilst I was away, a small packet had arrived in the post, containing a sample of algae collected from a local lake. The bottles contained globules of bright green jelly-like material, with enough integrity to pick up with the fingers and they were intriguing enough for me to drive across one lunchtime to take a closer look at the lake where they came from.

Hetton Lyons Country Park is on the Permian Limestone plateau about 10 kilometres from where I live. It is on the site of a former colliery which closed in 1960 and the surrounding land has been reclaimed and partially converted to a country park.   The lake – probably a hectare or so in size – is used for angling and water sports, and the paths around the edge were busy with cyclists and dog-walkers.   It is on the edge of Hetton-le-Hole, a small town whose odd name refers to its location in one of the more sheltered parts of the plateau.

Aphanothece_stagnina_Hetton

A mucilaginous colony of Aphanothece stagnina (left) with (right) a microscopic view of the individual cyanobacterial cells embedded in mucilage. Scale bar: 25 micrometres (= 1/40th of a millimetre).

There were plenty of green algae around the margins of the shallow lake but, amidst this in a few locations, I could also see the small globules of the alga resting on the bottom which, like the colonies I had been sent, could easily be picked –up.    Under the microscope, these resolved into tiny cyanobacterial cells, mostly oval in outline and about five micrometres in diameter.   These belong to Aphanothece stagnina, a relative of the Gloeocapsa alpina, which we have seen in two other recent posts (see “The mysteries of Clapham Junction” and “Poking around amongst sheep’s droppings …”), albeit in very different habitats.

The word “cyanobacteria” alone is usually enough to make the manager of a recreational lake break out in a sweat.   Many cyanobacteria produce toxins that can affect the nervous system and the liver. This means that no contact water sports (swimming and canoeing, for example) can take place and dog-owners have to be warned not to let their pets drink from the water.   However, as far as I can tell from a brief search on the internet, Aphanothece is not a genus that is often reported in association with toxic blooms.   One less excuse, then, not to go wild swimming in a lake in north-east England on a breezy May afternoon …