That’s funny …

The most exciting phrase to hear in science, the one that heralds new discoveries, is not “Eureka!” but “That’s funny”
Attributed to Issac Asimov

I have visited Croasdale Beck, in western Cumbria, twenty-eight times since 2015 and I thought I was beginning to understand it’s character (see “A tale of two diatoms” and “What a difference a storm makes”).   It is the unruly sibling of the River Ehen which, usually, offers a far less amenable environment for freshwater algae.  Last week, however, as we walked down the track towards the stream, we were confronted with the unexpected sight of a river bed that was bright green.  Our measurements, too, showed that not only was there a lot of algae in absolute terms, but there was far more here than we had measured in the River Ehen.  Usually, the situation is reversed, with the Ehen having more than Croasdale Beck.

Croasdale Beck at NY 087 170 looking upstream in April 2018.   The position of the gravel bar has shifted over the time that we have visited, with the wetted channel originally being at the right hand side, rather than being split into two.

It was hard to capture the extent of the algae growing on the river bed in a photograph, but the macroscopic image below captures the colour of the growths well, and you’ll have to use your imagination to scale this up to cover half of the stream bed.  Under the microscope, these growths turned out to be virtual monocultures of the green alga Draparnaldia glomerata.  This is common in clean rivers in spring time, and I often find it in the nearby River Ehen (see “The River Ehen in February”).  What my images do not show is the mucilage that surrounds the filaments.   In some cases, the growths can be almost jelly-like, so prolific is this mucilage.   One of the roles of this mucilage plays is to serve a matrix within which enzymes released by the fine hairs at the end of the filaments can act to release nutrients bound into tiny organic particles (see “A day out in Weardale …”).

Growths of Draparnaldia glomerata in Croasdale Beck (NY 087 170) in April 2018.  The upper image shows the filaments growing on submerged stones and the lower image shows the bushy side-branches growing from a central filament.  Scale bar: 100 micrometres (= 1/10th of a millimetre).

We also sample a site a couple of kilometres downstream on Croasdale Beck and, here again, the river bed was smothered in green growths.  I assumed that this, too, was Draparnaldia glomerata but, when I examined the filaments under the microscope, it turned out to be a different alga altogether: Ulothrix zonata (see “Bollihope Bhavacakra” and links therein).   There is little difference between the two sites that might explain this: the latter is slightly lower and is surrounded by rough pasture whilst the other is closer to the fells.   However, I have seen both Ulothrix zonata and Draparnaldia glomerata at several other sites in the vicinity, and a simplistic interpretation based on agricultural enrichment does not really work.

There were also a few obvious differences in the diatoms that I saw in the two samples.   In both cases, we sampled stones lacking green algae but, instead, having a thick brown biofilm.  Several taxa were common to both sites – Odontidium mesodon, for example (broadly confirming the hypothesis in “A tale of two diatoms …”) and Meridion circulare was conspicuous in both.   However, the lower site had many more cells of “Ulnaria ulna” than the upper site.   Again, there is no ready explanation but, at the same time, neither green algae or diatoms at either site suggests anything malign.

Filaments of Ulothrix zonata at Croasdale Beck (NY 072 161).   The upper filament is in a healthy vegetative state (although the cell walls are not as thickened as in many populations).  The lower filament is producing zoospores.   Scale bar: 25 micrometres (= 1/40th of a millimetre).

Diatoms in Croasdale Beck, April 2018.   a. upper site: note the abundance of Odontidium mesodon, plus cells of Gomphonema cf exilissimum, Achnanthidium minutissimum and Meridion circulare; b. lower site: note the presence of “Ulnaria ulna” as well as several of the taxa found at the upper site.   Scale bar: 25 micrometres (= 1/40th of a millimetre).  

So where does this take us?  I talked about the benefits of repeat visits to the same site in “A brief history of time wasting …” and I think that these data from Croasdale are making a similar point.  By necessity, most formal assessments of the state of ecology are based on very limited data, from which, at best, we get an estimate of the “average” condition of a water body over a period of time.  Repeat visits might lead to a more precise assessment of the “average” state but also give us a better idea of the whole range of conditions that might be encountered.  Here, I suspect, we chanced upon one of the extremes of the distribution of conditions.   Cold, wet weather in early spring delayed the growth of many plants – aquatic and terrestrial – as well as the invertebrates that graze them.   Then the period of warm, dry conditions that preceded our visit gave the algae an opportunity to thrive whilst their grazers are still playing “catch-up”.  I suspect that next time we visit Croasdale Beck will have its familiar appearance.   It is, nonetheless, sobering to think that this single visit could have formed fifty-percent of the evidence on which a formal assessment might have been made.



What a difference a storm makes …

I was back at Croasdale Beck last week and noticed a rather dramatic change to the meander just upstream from our regular sampling spot.   If you look at the photograph that heads the post “A tale of two diatoms …”, you’ll see the stream flowing around this meander.  Now, however, it has cut a new, shorter channel that bypasses the meander altogether.   We visited the stream just a few days after Storm Ophelia had passed through although, judging by the grass growing on the gravel of the abandoned meander, it was not necessarily this particular event that reshaped the stream.

Croasdale Beck is an unruly tributary of the River Ehen, rising on the fells above Ennerdale Water and tumbling down across rough grazing land and some semi-improved pasture (as in the picture above) before joining the Ehen in Ennerdale Bridge.   This is not the first time that we have seen conspicuous changes in the channel after a storm.  The magnitude of the flood is illustrated by the hydrograph below, which went off-scale for a period, as the discharge exceeded 3000 mega litres per day (300 MLD is the approximate limit for safe wading, in my experience).   I noticed that there was much less green algae present than we usually record at this time of year, although the diatom film was still quite thick.   Some of the stones that I picked up to sample had the slimy biofilm on the underside, suggesting that they had been recently rolled by the flooded river.   Croasdale Beck has no lake to buffer the rise and fall of the floodwaters and a huge amount of energy is carried down in a short period of time as the water surges downstream.

By the time we had arrived, the floodwaters had subsided and the sheep were contentedly grazing the surrounding land.  The stream itself was almost back to base flow (in contrast to the River Ehen which was still only just wadable).  Only the meander looked different …

The hydrograph for the River Ehen, as the aftereffects of Storm Ophelia make their way downstream.

A tale of two diatoms …

I’ve been writing about the River Ehen in Cumbria since I started this blog, sharing my delight in the diversity of the microscopic world in this small river along with my frustrations in trying to understand what it is that gives this river its character.   We know that the presence of a weir at the outfall of Ennerdale Water has a big influence so, in 2015, we started to look at a nearby stream, Croasdale Beck (photographed above), which is similar in many respects but lacks the regulating influence of a lake and weir.  Maybe, we reasoned, the differences we observed would give us a better understanding of how the regulation of flow in the River Ehen influenced the ecology.

Broadly speaking, any kind of impoundment – whether a natural lake or an artificial reservoir – removes a lot of the energy from a stream that might otherwise roll stones, move sediment downstream and, in the process, dislodge the organisms that live there.   We noticed quite early in our studies, for example, that Croasdale Beck generally had less algae growing on the stones than in the nearby River Ehen, and also that the algal flora here was less diverse.

There were also some quite big differences in the algae between the two streams.  I wrote about one of the Cyanobacteria that are found in Croasdale Beck in “A bigger splash …” but there are also differences in the types of diatoms found in the two streams.  Most diatomists think about ecology primarily in terms of the chemical environment within which the diatoms live but I think that some of the differences that I see between the diatoms in the River Ehen and Croasdale Beck are a result of the different hydrological regimes in the two streams.

Several diatom species are common to both streams but two, in particular, stand out as being common in Croasdale Beck but rare in the River Ehen.  These are Achnanthes oblongella (illustrated in “Why do you look for the living amongst the dead?”) and Odontidium mesodon.  However, a closer look at the data showed that, whilst both were common in Croasdale Beck, they were rarely both common in the same sample.   If Achnanthes oblongella was abundant, then Odontidium mesodon was rare and vice versa, as the left hand graph below shows.   There were also a few situations when neither was abundant.

Odontidium mesodon from Croasdale Beck, Cumbria, July 2015.  Photographs by Lydia King.

The story got more interesting when I plotted the relative proportions of these two taxa against the amount of chlorophyll that we measured on the stones at the time of sample collection (see right hand graph below).   This gives us an idea of the total biomass of algae present at the site (which, in this particular case, are dominated by diatoms).   Achnanthes oblongella was most abundant when the biomass was very low, whilst Odontidium mesodon peaked at a slightly higher biomass, but proportions of both dropped off when the biomass was high.   I should point out that “high” in the context of Croasdale Beck is relatively low by the standards of other streams that we have examined and this adds another layer of complexity to the story.

When the biomass exceeds two micrograms per square centimetre, both Odontidium mesodon and Achnanthes oblongella are uncommon in the biomass, and the most abundant diatoms are Achnanthidum minutissimum, Fragilaria gracilis or, on one occasion, Cocconeis placentula.   A. minutissimum and F. gracilis are both common in the nearby River Ehen but C. placentula is very rarely found there.

The difference between River Ehen and Croasdale Beck is probably largely a result of the very difernt hydrological regimes, though this is an aspect of the ecology of diatoms that has been studied relatively rarely.   The differences within my Croasdale Beck samples is probably also a result of the hydrology, but reflects changes over time.   I suspect that Achnanthes oblongella is the natural “pioneer” species of soft-water, hydrologically-dynamic streams, and that Diatoma mesodon is able to over-grow A. oblongella when the biomass on stones increases due to prolonged periods of relative stability in the stream bed.  That still does not explain what happens when biomass is high and neither are abundant: the dataset is still small and we need to collect some more data to try to understand this. But the point of the post is mostly to remind everyone of the dangers of trying to interpret the ecology of attached stream algae solely in terms of their chemical environment.   And to make the point that a little more understanding of a natural system often fuels, rather than removes, the sense of mystery that is always present in nature.

a. The relationship between representation of Achnanthes oblongella and Odontidium mesodon in samples from Croasdale Beck between May 2015 and January 2017. Both axes are presented on square-root-transformed scales; b. relationship between representation of Achnanthes oblongella and Odontium mesodon and total epilithic biomass (as chlorophyll a). Lines show a locally-weighted polynomial (LOESS) regression fitted to the data.

Taxonomic note

Odontidium mesodon is the correct name for Diatoma mesodon (see “Diatoms from the Valley of Flowers”).   The name Odontidium had fallen out of popular usage, but Ingrid Jüttner and colleagues made the case to resurrect this genus for a few species that would hitherto have been classified in Diatoma.

Achnanthes oblongella, by contrast, is definitely not the correct name for this organism.  Three other names have been proposed: Karayevia oblongella, Psammothidium oblongella and Platessa oblongella.  The first two are not convincing and I have not yet been able to see the paper describing the third.  It will be interesting to see what a combined morphological and genetic study of this species (or, more likely, complex) reveals.


Jüttner, I., Williams, D.M., Levkov, Z., Falasco, E., Battegazzore, M., Cantonati, M., Van de Vijver, B., Angele, C. & Ector, L. (2015).  Reinvestigation of the type material for Odontidium hyemale (Roth) Kützing and related species, with description of four new species in the genus Odontidium (Fragilariaceae, Bacillariophyta).  Phytotaxa 234: 1-36.

Wetzel, C.E., Lange-Bertalot, H. & Ector, L. (2017): Type analysis of Achnanthes oblongella Østrup and resurrection of Achnanthes saxonica Krasske (Bacillariophyta). Nova Hedwigia Beiheft (in press).