Change is the only constant …

The diatoms I saw in my sample from the littoral of Lake Popovo (described in the previous post) reminded me of an assemblage that I had seen in another lake which, apart from its location, has much in common with Popovo. This lake is Wastwater, in the western part of the English Lake District (see “The Power of Rock …”).  Like Popovo, it is situated in a remote a region of hard volcanic rocks and, as such, has very soft water and is subject to few of the pressures to which most of our freshwaters are subject.  The photograph above shows me sampling Wastwater in about 2006 (more about this photograph, by the way, in “A cautionary tale …”).

I wrote about Wastwater when I was writing my book Of Microscopes and Monsters, the precursor of this blog.   I focussed, in particular, on an experiment that my friend Lydia King had performed as part of the research towards her PhD.  Her previous work had established that there were relationships between the types of algae that she found in lakes in the Lake District and the amount of nutrients that they contained.  She also saw that the types of algae she found depended upon how acid or alkaline the water was.  But the water chemistry only explained a part of the variation in the algae and now she wanted to find out about the variation that was not explained by this.   In particular, she wanted to know how much of the variation was due to the way that the algae interacted with each other.

Lydia’s experiment involved putting clay pots into the shallows at the edge of Wastwater and then watched how the algal communities changed over the course of six weeks.  She also examined small parts of the pots at extremely high magnifications using a scanning electron microscope.   These micrographs, and subsequent conversations with her, had inspired some of my early paintings and I returned to this subject several times, finally producing a series of three pictures that showed changes in the algae over time.

The microbial world of the littoral zone of Wastwater after two weeks of colonisation showing unidentified small unicellular blue-green alga,  unidentified small unicellular green alga; thin filaments of Phormidium,  Achnanthidium minutissimum and Gomphonema parvulum.

The first of these shows the surface of the plant pot after being submerged in Wastwater for two weeks.   You could think of this as a patch of waste ground that was, at the start of the experiment, bare of vegetation.   If we watched this patch over a number of weeks, we would notice some plants appearing: scattered stalks of grass, perhaps some rosebay willow herb, dock or plantains. A gardener might dismiss these as “weeds”, although this term has no ecological meaning but ecologists prefer to think of these as “pioneers”: plants adapted to colonising new habitats, growing quickly (which might mean producing lots of seeds in a short space of time or producing rhizomes or runners) and covering the ground.  This same process has taken place on Lydia’s plant pot in Wastwater: the “weeds” in this case are scattered thin filaments of the blue-green alga Phormidium, the diatoms Achnanthidium minutissimum and Gomphonema parvulum plus a number of spherical green and blue-green cells that she couldn’t identify.   Such is the scale that we are working at that this open landscape still contains about 92000 cells per square centimetre.

The microbial world of the littoral zone of Wastwater after three weeks of colonisation.   The composition is similar to that in the previous figure but the density of cells is greater.

When she came back a week later, much of the empty space had been infilled; there were now about 300,000 cells per square centimetre.  These mostly belonged to the same species that she had found the week before.  The difference is that they are now rubbing up against each other and this has some important consequences.  All plants need light and nutrients to grow and algae are no exceptions.   Sunlight provides the energy for photosynthesis but now, at week three, the density of algae is such that there is a chance that some of the light will be intercepted by a neighbouring cell.   The total amount of sunlight that filters through the water to the pot surface is already much lower than that available at the lake surface; now it has to be shared out between many more cells.   At this point, properties such as fast growth rates that helped our pioneers to colonise the plant pot become less relevant, and it is algae that are better adapted to capturing the limited light that will survive.

So when Lydia came back to Wastwater after six weeks, she saw a very different community of algae on her pots.   There was still a lot of Achnanthidium minutissimum, but rising above these was the elegant art deco shape of Gomphonema acuminatum (also found in Lake Popovo) which, importantly for our story, grows on a long stalk.  There are also cells of “Cymbella affinis” (the correct name at the time that Lydia was working but see comments in the previous post about the nomenclatural history of this species).   This, too, grows on a long-stalk, the better to grow above the Achnanthidium and other pioneers.   If we continue to use the analogy of a patch of wasteland, then it has now reached the point where it has been invaded by shrubs such as hawthorn and blackthorn.   However, in a terrestrial habitat this would happen two or three years after the first pioneers had arrived, not six weeks as Lydia had observed for the algae.   She also found the diatom called Tabellaria flocculosa which forms filaments.  These often start out loosely-attached to the substratum but more often break free and become entangled around the other algae.   In our “wasteland” analogy, these would be the brambles.

The microbial world of the littoral zone of Wastwater after five weeks of colonisation.  Gomphonema acuminatum, “Cymbella affinis” and Tabellaria flocculosa have now joined the assemblage seen in the two earlier dioramas.

The experiment finished shortly after this, terminated when the apparatus was overturned.  Whether by a wave or by vandalism, Lydia will never know but this event is, itself, a metaphor for the harsh world in which benthic algae have to survive.  In real life, the many cobbles in the littoral zone will be rolled by wave action or, as we have seen in other posts, invertebrate grazers could have removed much of the “shrubbery”, leaving a “pasture” composed of the tough, fast-growing species such as Achnanthidium minutissimum to dominate samples.   The “successions” we see in the microscopic world not only take place much more quickly than those in the macro world, but they also rarely have a stable “climax”: just a brief pause before the next onslaught from the physical, chemical and biological processes that shape their existence.

References

King, L., Barker, P. & Jones, R.I. (2000). Epilithic algal communities and their relationship to environmental variables in lakes of the English Lake District. Freshwater Biology 45: 425-442.

King, L., Jones, R.I. & Barker, P. (2002). Seasonal variation in the epilithic algal communities from four lakes of different trophic state. Archiv für Hydrobiologie 154: 177-198.

Advertisements

Diatom hunting in the Pirin mountains

I started 2018 peering down my microscope at a sample that I collected whilst in Bulgaria back in the summer.   I have written about my trip to the Pirin mountains before (see “Desmids from the Pirin mountains”) but the diatom sample that I collected from Lake Popovo had remained unexamined since I got back.

I had waded into the littoral zone of this steep-sided corrie lake and picked up a few of the smaller stones, which I had then scrubbed with the toothbrush stowed in my rucksack to remove the thin film of diatoms.  These, like most of the algae that I collect on my travels, get treated to a bath in local spirits to ease the journey back to the UK.  This is not an ideal preservative for soft-bodied algae but is not a problem when your primary interest is diatoms with their tough silica cell walls.  Once I got back, I had them prepared and mounted ready for inspection, but then got distracted by other things and have only just got around to having a proper look.

The two most abundant taxa were the Achnanthidium minutissimum complex (probably at least three species) and Cymbella excisiformis.  Together, these constituted over eighty per cent of all the diatoms in the sample.  Ten years ago, I would have called the organism I was calling Cymbella excisiformis by a different name, Cymbella affinis, but opinions have shifted more than once.  The original Diatomeen im Süsswasser-Benthos von Mitteleuropa has images of C. affinis that are actually C. tumidula, and also describes C. excisa as a separate species.   However, the most recent view is that C. affinis and C. excisa are two names for the same species, with C. affinis taking precedence.   To confuse matters yet further, the population illustrated below shows a gradation of features from “C. affinis” to “C. excisiformis”, suggesting that the use of length:width as a discriminating factor is over simplistic.  Krammer tried to explain his rationale for distinguishing between these species in his 2002 monograph but he uses the name “C. excisa” for the organism called “C. affinis” in our 2017 English edition.  Confused?  You will be ….

Cymbella excisiformis” from Lake Popovo, Pirin Mountains, Bulgaria, August 2017.   Based on Lange-Bertalot et al. (2017)’s criteria of length:breadth 4.2-5.3 in C. excisiformis compared to 3.1 – 3.8 in C. affinis, images a., b. and c. are C. excisiformis whilst d., e., f. and g. are C. affinis.   Scale bar: 10 micrometres (= 1/100th of a millimetre).

This is another good example of points that I have made several times before: that we should always try to identify populations rather than single cells, and that we should treat dimensions stated in the literature as indicative rather than definitive (see “More about Gomphonema vibrio”).    Length:width, in particular, can change a lot during the life-cycle of the diatom.

Species of Gomphonema were also present in the sample.  Though not numerically abundant (none constituted more than one per cent of the total count), they included some large cells which, in addition, have extensive mucilaginous stalks, so their contribution to total biomass is greater than their low abundance suggests.   I’ll write more about the ecology of these species in the next post.   Finally, I also found other Cymbella species, as well as some Encyonema and Encyonopsis, and a few valves of Eucocconeis flexella, a relative of Achnanthidium and Cocconeis which has a distinctive diagonal raphe.

Gomphonema spp. from Lake Popovo, Pirin mountains, Bulgaria, August 2017.   h., i.: G. acuminatum; j.: G. truncatum; k.: unidentified girdle view; l.: G. pumilum.  Scale bar: 10 micrometres (= 1/100th of a millimetre).

There is, at this point in time, no official Bulgarian method for assessing the ecological status of lakes using diatoms so I have evaluated Lake Popovo as if it were a low alkalinity lake in the UK instead.  Using the method we developed, this one sample has an Ecological Quality Ratio of 0.92, which puts it on the border between high and good status.   Looking around the lake, I see no reason why it should not be firmly in high status but, at the same time, I am using an evaluation method that was designed for lakes 2000 kilometres away, so maybe we should not expect perfect results.    However, I have performed similar exercises at other lakes far from the UK and also got similar results (see “Lago di Maggiore under the microscope”) which points to a basic robustness in this approach.

The outflow of Lake Popovo leads into a cascade that ends in the first of a series of lakes, the “Fish Popovski” lakes.   I wrote about the desmids in this lake back in September (see “”Desmids from the Pirin mountains”) and will return to this sample in order to describe the diatoms in another post.   But, meanwhile, the assemblage at Popovo reminded me of the littoral algae in another lake that I really should tell you about …

Miscellaneous diatoms from Lake Popovo, Pirin mountains, Bulgaria, August 2017.   m.: Cymbella sp.; n.: Encyonema neogracile; o. and p.: Eucocconeis flexella (raphe valve and girdle view respectively).  Scale bar: 10 micrometres (= 1/100th of a millimetre).

Lake Popovo, photographed from close to the location from which my sample was collected.  The brass plate on the rock at the right hand side gives the altitude as 2234 metres above sea level.  The photograph at the top of the post shows Lake Popovo against a backdrop of the Pirin mountains.

References

Hofmann, G., Werum, M. & Lange-Bertalot, H. (2011).   Diatomeen im Süßwasser-Benthos von Mitteleuropa. A.R.G. Gantner Verlag K.G., Rugell.

Krammer, K. (2002).  Diatoms of Europe volume 3: Cymbella.   A.R.G. Gantner Verlag K.G., Ruggell, Germany.

Lange-Bertalot, H., Hofmann, G., Werum, M. & Cantonati, M. (2017).   Freshwater Benthic Diatoms of Central Europe: Over 800 Common Species Used In Ecological Assessment (edited by M. Cantonati, M.G. Kelly & H. Lange-Bertalot).   Koeltz Botanical Books, Schmitten-Oberreifenberg.

The UK lake diatom assessment method is described in:

Bennion, H., Kelly, M.G., Juggins, S., Yallop, M.L., Burgess, A., Jamieson, J. & Krokowski, J. (2014).  Assessment of ecological status in UK lakes using benthic diatoms.  Freshwater Science 33: 639-654.

Details of the calculation can be found in the UK TAG method statement.

In pursuit of Bulgarian diatoms …

Our visit to Rila Monastery was one of the cultural highlights of our trip to Bulgaria in the summer (see “The art of icons …”) with the added bonus that it is set amidst some spectacular scenery.   The monastery was founded by St Ivan Rilski (“St John of Rila”) in the 10th century, though the present structures date from the 19th century.   St Ivan, I gleaned from my reading, shared a love of nature with St Francis and St Cuthbert and Rila’s remote location reflects his desire to live the life of a hermit.

Beyond the monastery the road twists and turns amidst the forest that lines the valley.   Occasionally, the canopy is broken by meadows and orchards of apricot and plum trees.  The apricots were ripe for harvest and at an easy height for foraging as we passed by.   We were too late in the year to find many wild flowers in these meadows but the absence of any of the paraphernalia associated with intensive agriculture made us suspect that these would have been a riot of colour in the spring.    Eventually, we came to a small hamlet set amidst a wider area of meadows, where we refuelled at a small café serving the delicious local bean soup (“bob chorba”) before making our way across the meadow to the stream.

A haystack in a meadow near Rila Monestery, August 2017.

The Rila stream itself flowed through a densely-wooded channel, with a variety of substrates from coarse sand to moss-covered boulders.   The larger stones were mostly granite, reflecting the underlying geology of the region, which almost certainly means that the water was very soft.  The surrounding vegetation and low population density also mean that the water is probably as pure as we are likely to find anywhere in Europe.   I had a toothbrush and sample bottle in the bottom of my rucksack and scrubbed a few cobble-sized stones to remove the thin surface film and stowed this for the journey back down the valley.

Sampling Rila stream at Kirilova meadows, a few kilometres upstream from Rila Monestery in August 2017.   The photograph at the top of the post shows the scenery around Kirilova meadows.

It has taken until now for me to get around to looking at this sample, which turned out to have a large population of Gomphonema rhombicum, along with quite a lot of Achnanthidium minutissimum and relatives, confirming my suspicion of a circumneutral, low nutrient environment.   G. rhombicium is a relatively uncommon diatom, so I was intrigued to have a closer look.  It has a similar outline to G. pumilum, which is very common, but is larger and has a distinct broad lanceolate axial area and, consequently, relatively short striae.   The axial area broadens out a little further at the central area, where there is also a single stigmoid.  I wish now that I had had a look at the sample before digestion as many of the larger Gomphonema species have long mucilaginous stalks, whereas G. pumilum and relatives tend to be attached to the substrate by short mucilaginous pads.   I can find nothing in the literature that alludes to the habit of the living cell and, on this particular occasion, am in no position to judge the shortcomings of my peers.

By coincidence, the type location for Gomphonema rhombicum is given as “Appleby, Westmoreland”, which is just over an hour’s drive from where I live.   The most obvious place to hunt for G. rhombicum would be the River Eden; however, the scant details on the ecology of G. rhombicum that I can find suggest a preference for softer water than found here.  This is a geologically-complex area so there is a possibility of suitable habitat existing in a stream in the vicinity.  If the Eden was the location from which the original population of G. rhombicum was collected, then I suspect that it may have been a casualty of the agricultural intensification that has taken place in this area since it was first described.

Cleaned valves of Gomphonema rhombicum from Rila stream at Kirilova meadows, August 2017.  a. – g. show valve views; h. shows a girdle view.  The scale bar is 10 micrometres (= 100th of a millimetre).

That leaves me with just one option: a return to the Rila National Park.  I think I can just about live with that.   We stayed at Hotel Pchelina, a few kilometres down the valley from Rila Monestery and our dinner that evening was the most delicious grilled trout that I have ever tasted.  If a return visit was needed to solve the mystery of Gomphonema rhombicum’s habit then I think that is a hardship with which I can just about cope …

Reference

Iserentant, R. & Ector, L. (1996).  Gomphonema rhombicum M. Schmidt (Bacillariophyta): typification et description en microscopie optique.   Bulletin Français de la Pêche et de la Pisciculture 341/342: 115-124.

Ecology’s bear necessities

I found an old box of slides recently, which took me on a nostalgic journey back to British Columbia in 1980 and, in particular, to a weekend fishing trip with my cousin Steve.  We travelled north from Terrace, where he lived, along a series of unsurfaced roads through dense pine forest, passing the ethereal moonscape of Nisga’a Memorial Lava Bed to the Nass River where we cast lures and caught the salmon which became our dinner a few hours later.   The following morning we followed the road past an impressive Piedmont glacier, through the small town of Stewart and, a couple of miles beyond, passed an unmanned border post and entered Alaska.

The tiny settlement of Hyder sat just beyond the border, beyond which the forests close in again around the gravel track that followed a small stream into the hills.   When we pulled up beside the road and got out, however, the overwhelming sensory experience was not the landscape or even the sound of the stream tumbling out of the hills towards the fjord behind us.  It was the stench of rotting fish.   We were witnessing the spawning and subsequent death throes of the Pacific Salmon.   Unlike the Atlantic Salmon (Salmo salar) which can repeat their migration from the sea to freshwater several times, Pacific Salmon (Onchorhynchus spp.) spawn only once in their lifetime.   Exhausted after the exertions of the migration and what is euphemistically referred to as “big bang reproduction”, the salmon become easy prey for bears, one of whom emerged from the forest a hundred metres or so upstream of where we were standing.

My first encounter with the USA.   The border is at the point where the metalled road ends and the gravel track starts.  The building on the left is the US Customs post.   

You can just make out the bear in the photograph at the top of the post (I’ve also circled in another version at the end).  At the time, my camera was a Kodak Instamatic, which had a semi-wide-angle lens.   We all have two appendages dangling from our hips that make up for many of the deficiencies of a wide-angle lens but, on that stream bank in Alaska, I decided that discretion was the better part of valour.   We watched from afar and the multisensory memory is rather more vivid than the somewhat faded Kodachrome slide that I found in the loft.

That would have been the end of the story except that, in the early years of the new millennium, scientific papers started to appear which turned this spectacle from an item on the wildlife tourist’s bucket list to an integral component of the engine that drives the forest ecosystems of the Pacific Northwest.    These forests, like most natural systems, are hungry for nutrients such as nitrogen and phosphorus and the salmon are, in effect, unwitting suppliers of the fertiliser that the trees need.   The Pacific Salmon spend up to five years in the ocean before moving to their spawning grounds.   Those strong muscles that they need to swim upstream and leap up waterfalls are largely protein which is built from nitrogen-containing molecules.  And nitrogen is, coincidentally, the nutrient that trees need most.

A view across Nisga’a Memorial Lava Bed in the Nass River valley, British Columbia.  The lava was the result of a volcanic eruption in about 1700.  This and other photographs in this post were taken with my Kodak Instamatic, which partially explains their poor quality.

By fishing the dying salmon from streams such as this (and even grabbing the leaping salmon before they get to their spawning grounds – see some spectacular footage from David Attenborugh’s Nature’s Great Events here) the bears become the agents by which the salmon’s nutrients are transferred from the Pacific Ocean to the forests.    It has been estimated that up to a quarter of the nitrogen needs of the forest around these streams is supplied in this way.   Indeed, some have suggested that this transfer of nutrients may be so essential to the functioning of this forest ecosystem that the salmon and bears are, in effect, “keystone species” and that their interaction has an effect that is greater than their contributions individually.

Brian Moss used to use this as a pithy illustration of the need to take a very broad view when managing ecosystems.   We all know that rivers flow into the sea but it is not always so obvious how the oceans can have an effect on terrestrial vegetation far inland.   Similarly, we understand how water flows across land and into stream channels but perhaps we have a hazier awareness of the movements in the opposite direction – from the river channel into the depths of the forest.   Salmon spawning in the Pacific Northwest is one of the world’s great wildlife spectacles, but it should also give us cause to pause and consider the complexities of interactions within natural habitats and, in turn, the dangers of meddling.

One more prosaic lessons that I learned from this short trip: if you are going to the USA, take a passport. Actually, I didn’t need one going into Alaska, but when we returned the Canadian border official had rolled out of bed after his Sunday lie-in  and almost didn’t let me back in!

Another species of hairy wildlife in search of salmon, this time on the Skeena River, British Columbia.   On this particular occasion, the salmon did not oblige and I had my first and only encounter with Kentucky Fried Chicken instead.  

References

Helfield, J.M. & Naiman, R.J. (2006).   Keystone interactions: salmon and bear in riparian forests of Alaska.  Ecosystems 9: 167-180.

Naiman, R.J., Bilby, R.E., Schindler, D.E. & Helfield, J.M.  (2002).  Pacific salmon, nutrients, and the dynamics of freshwater and riparian ecosystems.  Ecosystems 2: 399-417.

Quinn, T.P., Carlson, S.M., Gende, S.M. & Rich, H.B. (2009). Transportation of Pacific salmon carcasses from streams to riparian forests by bears.  Canadian Journal of Zoology 87: 195-203.

The scene near Hyder, Alaska, this time with the bear circled, just in case you didn’t believe me.

Winning hearts and minds …

I write several of my posts whilst travelling, though am always conscious of the hypocrisy of writing an environmentally-themed blog whilst, at the same time, chalking up an embarrassing carbon footprint.  Last month, however, I participated in my first “eConference”, in which the participants were linked by the internet.  With over 200 people from all over Europe, and beyond, attending for all or part of the three days, there was a substantial environmental benefit and whilst there was little potential for the often-useful “off-piste” conversations that are often as useful as the formal programme of a conference, there were some unexpected benefits.  I, for example, managed to get the ironing done whilst listening to Daniel Hering and Annette Battrup-Pedersen’s talks.

You can find the presentations by following this link: https://www.ceh.ac.uk/get-involved/events/future-water-management-europe-econference.   My talk is the first and, in it, I tried to lay out some of the strengths and weaknesses of the ways that we collect and use ecological data for managing lakes and rivers.  I was aiming to give a high level overview of the situation and, as I prepared, I found myself drawing, as I often seem to do, on medical and health-related metaphors.

At its simplest, ecological assessment involves looking at a habitat, collecting information about the types of communities that are present and match the information we collect to knowledge that we have obtained from outside sources (such as books and teachers) and from prior experience in order to guide decisions about future management of that habitat. At its simplest, this may involve categoric distinctions (“this section of a river is okay, but that one is not”) but we often find that finer distinctions are necessary, much as when a doctor asks a patient to articulate pain on a scale of one to ten.  The doctor-patient analogy is important, because the outcomes from ecological assessment almost always need to be communicated to people with far less technical understanding than the person who collected the information in the first place.

I’ve had more opportunity than I would have liked to ruminate on these analogies in recent years as my youngest son was diagnosed with Type I diabetes in 2014 (see “Why are ecologists so obsessed with monitoring?”).   One of the most impressive lessons for me was how the medical team at our local hospital managed to both stabilise his condition and teach him the rudiments of managing his blood sugar levels in less than a week.   He was a teenager with limited interest in science so the complexities of measuring and interpreting blood sugar levels had to be communicated in a very practical manner.  That he now lives a pretty normal life stands testament to their communication, as much to their medical, skills.

The situation with diabetes offers a useful parallel to environmental assessment: blood sugar concentrations are monitored and evaluated against thresholds.  If the concentration crosses these thresholds (too high or too low), then action is taken to either reduce or increase blood sugar (inject insulin or eat some sugar or carbohydrates, respectively).   Blood sugar concentrations change gradually over time and are measured on a continuous scale.  However, for practical purposes they can be reduced to a simple “Goldilocks” formula (“too much”, “just right”, “not enough”).  Behind each category lie, for a diabetic, powerful associations that reinforce the consequences of not taking action (if you have even seen a diabetic suffering a “hypo”, you’ll know what I mean).

Categorical distinctions versus continuous scales embody the tensions at the heart of contemporary ecological assessment: a decision to act or not act is categorical yet change in nature tends to be more gradual.   The science behind ecological assessment tends to favour continuous scales, whilst regulation needs thresholds.  This is, indeed, captured in the Water Framework Directive (WFD): there are 38 references to “ecological status”, eight in the main text and the remainder in the annexes.  By contrast, there are just two references to “ecological quality ratios” – the continuous scale on which ecological assessment is based – both of which are in an annex.   Yet, somehow, these EQRs dominate conversation at most scientific meetings where the WFD is on the agenda.

You might think that this is an issue of semantics.  For both diabetes and ecological assessment, we can simply divide a continuous measurement scale into categories so what is the problem?   For diabetes, I think that the associations between low blood sugar and unpleasant, even dangerous consequences are such that it is not a problem.  For ecological assessment, I’m not so sure.  Like diabetes, our methods are able to convey the message that changes are taking place.  Unlike diabetes, they are often failing to finish the sentence with “… and bad things will happen unless you do something”.   EQRs can facilitate geek-to-geek interactions but often fail to transmit the associations to non-technical audiences – managers and stakeholders – that make them sit up and take notice.

I’d like to think that we can build categorical “triggers” into methods that make more direct links with these “bad things”.  In part, this would address the intrinsic uncertainty in our continuous scales (see “Certainly uncertain …”) but it would also greatly increase the ability of these methods to communicate risks and consequences to non-technical audiences (“look – this river is full of sewage fungus / filamentous algae – we must do something!”).   That’s important because, whilst I think that the WFD is successful at setting out principles for sustainable management of water, it fails if considered only as a means for top-down regulation.   In fact, I suspect that Article 14, which deals with public participation, is partly responsible for regulators not taking action (because “costs” are perceived as disproportionate to “benefits”) than for driving through improvements.   We need to start thinking more about ensuring that ecologists are given the tools to communicate their concerns beyond a narrow circle of fellow specialists (see also “The democratisation of stream ecology?”).   Despite all the research that the WFD has spawned, there has been a conspicuous failure to change “hearts and minds”.  In the final analysis, that is going to trump ecological nuance in determining the scale of environmental improvement we should expect.

Rolling stones gather no moss …

Back in early July I mused on how rivers changed over time (see “Where’s the Wear’s weir?”) and reflected on how this shapes our expectations about the plants and animals that we find.  In that post, I compared a view of the River Tees today with the same view as captured by J.R.W Turner at the end of the 18th century.   The photograph above is taken about 40 kilometres further upstream from Egglestone Abbey and shows the River Tees as it tumbles along in a narrow valley between Falcon Clints and Cronkley Scar.   I’ve written about this stretch of river before (see “The intricate ecology of green slime” and “More from Upper Teesdale”) and it is an idyllic stretch.   It all looks, to the uninitiated, very natural, almost untouched by the hand of man.

However, a couple of kilometres beyond this point we turn a corner and are confronted by a high waterfall, Cauldron Snout, formed where the river cascades over the hard Whin Sill.   Scrambling up the blocky dolerite is not difficult so long as you have a head for heights but, on reaching the top, a wall of concrete comes into view.  This is the dam of Cow Green Reservoir, constructed between 1967 and 1971 and highly controversial at the time.  The purpose of the reservoir was to regulate the flow in the River Tees, in particular ensuring that there was sufficient flow in the summer to ensure a steady supply for the industries of Teeside (most of which have, subsequently, closed).  My first visit to Cauldron Snout was in the early 1980s on a Northern Naturalist Union field excursion led by David Bellamy.  As we scrambled down Cauldron Snout, Tom Dunn, an elderly stalwart of the NNU, told me how much more impressive Cauldron Snout had been before the dam was closed.

Now look back at the picture at the top of this post.   The dark patches on the tops of the boulders emerging from the water are growths of the moss Schistidium rivulare, which thrives on the tops of stable boulders that are occasionally submerged.    The old adage “a rolling stone gathers no moss” is, actually, true, leaving me wondering how much less of this moss an walker beside this river in the mid-1960s might have seen.   How many more powerful surges of storm-fuelled water would have there been to overturn the larger boulders on which Schistidium rivulare depends?   Bear in mind, too, that two major tributaries, the Rivers Balder and Lune, also have flow regimes modified by reservoirs and the potential for subtle alteration of the view that Turner saw at Egglestone increases.   I wrote recently about how differences in hydrological regime can affect the types and quantities of algae that are found (see “A tale of two diatoms …”).   I may have stood at exactly the same place where Turner had sat when he drew the scene at Egglestone, but I was looking at a very different river.

The dam of Cow Green Reservoir looming above the top of Cauldron Snout in Upper Teesdale National Nature Reserve, Co. Durham, July 2017.  The picture at the top of this post shows the Tees a couple of kilometres downstream from Cauldron Snout.

Trevor Crisp from the Freshwater Biological Association showed that the consequences of Cow Green Reservoir on the River Tees extend beyond alterations to the flow.  Impounding a huge quantity of water in one of the coolest parts of the country also affects the temperature of the river, due to water’s high specific heat capacity.  This means that there is not just a narrower range of flows, but also a narrower range of temperature recorded.   The difference between coolest and warmest temperatures in the Tees below Cow Green dropped by 1 – 2 °C, which may not seem a lot, but one consequence is to delay the warming of the river water in Spring by about a month, which delays the development of young trout.  However, Crisp and colleagues went on to show that any reduction in growth rate due to lower temperatures was actually offset by other side-effects of the dam (such as a less harsh flow regime) to result in an increase in the total density of fish downstream.   Others have shown significant shifts in the types of invertebrate that he found in the Tees below Cow Green, with a decrease in taxa that are adapted to a harsh hydrological regime, as might be expected.   Maize Beck, a tributary which joins just below Cauldron Snout, and which has a natural flow regime, shows many fewer changes.

One conclusion that we can draw from all this is that healthy ecosystems such as the upper Tees are fairly resilient and can generally adapt to a certain amount of change, as Trevor Crisp’s work on the fish shows us. The big caveat on this is that the upper Tees is relatively unusual in having no natural salmon populations, as the waterfall at High Force presents a natural obstacle to migration.  Had this not been present, then all potential spawning grounds upstream of the reservoir would have been lost.   A second caveat is that there is still a lot that we do not know.   The studies of the river that followed the closure of the dam focussed on lists of the animal and plant species found; a modern ecologist might have put more effort into understanding the consequences for ecological processes, the “verbs” in ecosystems, rather than in the “nouns”.  Who knows how different energy pathways are now, compared to the days before regulation, and what the long-term consequences of such changes might be?  Schistidium rivulare is a good example of the limitations of our knowledge: its presence offers insights into the hydrology of the river, but we know relatively little about the roles that these semi-aquatic mosses play in the river ecosystem.   Knowing that there is much that we do not know should, at least, keep us humble as we struggle to find the balance between preserving natural landscapes and their sustainable use in the future.

Note

Twenty years ago, I would have recognised Schistidium rivulare, if not in the field, then at least after a quick check under the microscope.  Now, however, my moss identification skills are rusty and I had to turn to Pauline Lang to get this moss named.   I mentioned in “The Stresses of Summertime …” how the ecologist’s niche becomes the office not the field.  One danger is that we remain familiar with names (as I am with S. rivulare and other aquatic mosses) but, through lack of practice, lose the craft that connects those names to the living organisms.

References

Armitage, P.D. (2006).   Long-term faunal changes in a regulated and an unregulated stream – Cow Green thirty years on.  River Research and Applications 22: 957-966.

Crisp, D.T. (1973).  Some physical and chemical effects of the Cow Green (upper Teesdale) impoundment.  Freshwater Biology 7: 109-120.

Crisp, D.T., Mann, R.H.K. & Cubby, P.R. (1983).  Effects of regulation on the River Tees upon fish populations below Cow Green Reservoir.  Journal of Applied Ecology 20: 371-386.

Lang, P.D. & Murphy, K.J. (2012).  Environmental drivers, life strategies and bioindicator capacity of bryophyte communities in high-latitude headwater streams.  Hydrobiologia 612: 1-17.

The stresses of summertime …

One reaches a stage in an ecological career when your “niche” becomes the office not the field and you are expected to focus your hard-earned experience on data that others have collected.  That means that I spend more time than I wish – even in the summer – staring at computer screens and writing reports – and far too little time engaging directly with nature.   Today’s post is the result of a Saturday’s excursion around some of the more enigmatic parts of the Yorkshire Dales National Park (the enigma being, basically, that we spent most of our time in Cumbria, not Yorkshire).

The photograph above shows a steam locomotive hauling a train along the Settle to Carlisle railway as it makes its way through Mallerstang, the upper part of the Eden Valley.   It is a beautiful little valley, hidden away from the main tourist drags and the sight of a steam train imparted a sense that we were somehow detached, albeit briefly, from the modern world.   The river channel itself lies amidst the ribbon of woodland in the valley bottom.

The River Eden in Mallerstang (SD 778 985) with (right) a large pebble with a Cyanobacterial film.

Curious to see what kind of life thrives in such a heavily shaded stream, I hopped over a fence, pushed through some bankside vegetation, crouched down and lent out as far as possible to grab a few of the stones from the streambed.   As I would have expected in a stream in such a location, the slippery film on the stone surface was thin (this is the time of year when the algae and other microbes can barely grow fast enough to keep up with the voracious appetites of the invertebrates that inhabit the crevices among the rocks) but, when I held it up to the light, there was a distinct greenish tinge that piqued my curiosity.

Under the microscope, this green tinge revealed itself to be due to numerous filaments of a thin, non-heterocystous cyanobacterium (blue-green alga), similar to that which I see in the River Ehen (see “’Signal’ or ‘noise’?”).  There, Phormidium autumnale forms tough leathery mats whereas here there was no obvious arrangement of the filaments.   In fact, the filaments seemed to be randomly organised within a mass of organic matter that made photography difficult and the photograph below is of one that had glided into a clear space on the coverslip.   I was surprised that there were relatively few diatoms present but, amidst the clumps of cyanobacteria and organic matter, I could see cells of Gomphonema pumilum, though it was very definitely sub-dominant to the Phormidium.  That was not very easy to photograph either, and my images have been built-up using Helicon Focus stacking software.

Some of the algae living on stones in the upper River Eden, August 2017: a. Phormidium cf autumnale; b. and c.: Gomphonema cf pumilum.  Scale bar: 10 micrometres (= 100th of a centimetre). 

I have seen other streams where non-heterocystous cyanobacteria thrive during the summer months and suspect that their unpalatability relative to other algae may play a part in this.  This is partially induced by the proximity of grazers – a recent study suggested that filaments of Phormidium did not need to come into contact with the grazer itself, only to detect chemicals associated with the grazer in the ambient water.  This, in turn, can promote production of a tougher sheath, making the filaments less palatable.   I’m always a little surprised that aquatic invertebrates find diatoms, with their silica cell walls, palatable, but I see enough midge larvae greedily hoovering-up diatoms to recognise that they know something that I do not.

My brief visit to the upper River Eden reminds me that summer can be a tough time for stream algae.   Not only is this the time that the invertebrate larvae are scouring rock surfaces for algae to serve as the fuel that will catapult them into their brief adult phases, but also the trees are in full leaf, limiting the amount of energy that the algae can capture in order to power their own growth.   Not surprising, then, that so many algae – diatoms and other groups alike – are more prolific in the winter, when the invertebrates are not so active and there is less shade from marginal trees (see “Not so bleak midwinter?” and “A winter wonderland in the River Ehen”).   I’ll probably be sitting indoors staring at spreadsheets and writing reports this winter too, but I’ll still be looking for excuses to get out and explore nature’s hidden diversity.

Pendragon Castle, guarding the entrance to Mallerstang in the upper Eden Valley. 

Reference

Fiałkowska, E.  & Pajdak-Stós, A. (2014).  Chemical and mechanical signals inducing Phormidium (Cyanobacteria) defence against their grazers.   FEMS Microbiology Ecology 89: 659-669.