Where’s the Wear’s weir?

There was minor excitement in Durham – and some consternation amongst the rowing fraternity – when river levels dropped rapidly overnight last week.  The river had been very low for some time but was 20 cm lower on Wednesday morning (28 June) due, we learned, to a failure in a sluice gate on the weir just below Prebends Bridge.   It does not look very dramatic in the picture above (a temporary – but not wholly effective – repair had been effected a couple of days earlier) but, as the hydrograph below shows, it was enough to alter the levels to a point where rowing becomes difficult.  The following two days were wet and miserable and the rain caused levels to increase again (note the steep rise on the evening of 29 June as floodwater washed down from Weardale) before gradually tailing off over the next few days.  My photograph was taken in the afternoon of 2 July when levels were back to normal.

“Normal” is, however, a tricky word to apply to any river, so diverse are the alterations to which they are subject.  For me, the ponded section of the Wear upstream of the weir is all I have known and the view of the cathedral looming over the Fulling Mill and its weir is the quintessential impression of Durham, immortalised in J.M.W. Turner’s paintings.  Without that weir there would be no rowing on the river – an important “ecosystem service” within the city (see “Bring on the dambusters …”) – yet that dip in the hydrograph on Tuesday morning offers us a rare glimpse into what the river would have looked like in summers in the far past.  Rowers would be not be very happy were this to pesist but perhaps canoeists would prefer faster-flowing water?  Maximising the ecosystem services that a river provides often involves a trade-off between competing needs.

River levels in the River Wear at New Elvet (NZ 272    ) from 27 June to 2 July.  The orange line indicates the point at which flooding may occur.   From: https://flood-warning-information.service.gov.uk/station/8288425

I saw the opposite situation on the River Tees at Egglestone, just downstream from Barnard Castle.   Turner visited this location as part of the same trip that took him to Durham in 1797 and he sketched the view of Egglestone Abbey which he later worked up into a painting and engraving.   In his pictures you can see an old paper mill, what appears to be a weir across the Tees and open ground on the steep land in front of the abbey itself.   The view today is quite different: the mill is still there, albeit in a dilapidated condition and there is thick woodland on the river banks which completely obscures the view of the abbey.   There is also no sign of the weir but the mill race that diverts river water through the mill can still be seen, though water only flows through when the river is high.

I did wonder if this meant that the weir had been completely washed away since the mill had fallen derelict but another possibility is that the weir is artistic license on Turner’s part.  He made his sketch in 1797 but there is no obvious weir in the drawing that has survived.  The painting on which the engraving is based dates from about twenty years later, and it is possible that the weir was added to the composition, based on memories of other localities that he visited on that trip (including Durham).   The presence of a weir also cannot be confirmed from a painting by Thomas Girtin from about the same time but it is possible that he, too, worked up his watercolours some time after his sketching trips and relied on hazy memories.  And, as we know that Girton and Turner were acquainted, Turner may have fed off Girton’s interpretation of the scene, compounding the intital error.

Egglestone Abbey near Barnard Castle.  Engraved by T. Higham after J.M.W. Turner. 1822.   Image released under Creative Commons CC-BY-NC-ND (3.0 Unported)

The other possibility is that we are not looking at the same river as Turner or Girtin.   The river we look at today is downstream of major reservoirs at Cow Green and on two tributaries, the Greta and Balder, none of which were present when they visited.   Cow Green, in particular, was designed with regulation of the water supply in mind, in order to ensure that there was enough for the industries in Teesside.  One consequence is that there is more water in the Tees during the summer now than when Turner and Girtin visited.   Maybe a weir would have been necessary at that time to keep the water level high enough to feed the mill race during the summer?

So here, as in the Wear, “normal” is a difficult word to apply.   First impressions are that the river is now in a more natural state than two hundred years ago because an impediment to natural flow has been removed.  When we look more closely, however, we see that the river we see today is, in fact, a different type of “abnormal” to that which Turner and Girton sketched.   But we also need to remember that Turner and Girton’s interpretations are not entirely trustworthy guides to the past either.  There is much to be said for walking backwards into the future but occasionally this may mean that we trip ourselves up …

The view across the River Tees towards Abbey Mill and Egglestone Abbey from approximately the same place as Turner’s view.  The mill is just visible amongst the trees in the middle of the picture.

Reference

David Hill (1996).  Turner and the North.   Yale University Press, New Haven and London.

 

Advertisements

A tale of two diatoms …

I’ve been writing about the River Ehen in Cumbria since I started this blog, sharing my delight in the diversity of the microscopic world in this small river along with my frustrations in trying to understand what it is that gives this river its character.   We know that the presence of a weir at the outfall of Ennerdale Water has a big influence so, in 2015, we started to look at a nearby stream, Croasdale Beck (photographed above), which is similar in many respects but lacks the regulating influence of a lake and weir.  Maybe, we reasoned, the differences we observed would give us a better understanding of how the regulation of flow in the River Ehen influenced the ecology.

Broadly speaking, any kind of impoundment – whether a natural lake or an artificial reservoir – removes a lot of the energy from a stream that might otherwise roll stones, move sediment downstream and, in the process, dislodge the organisms that live there.   We noticed quite early in our studies, for example, that Croasdale Beck generally had less algae growing on the stones than in the nearby River Ehen, and also that the algal flora here was less diverse.

There were also some quite big differences in the algae between the two streams.  I wrote about one of the Cyanobacteria that are found in Croasdale Beck in “A bigger splash …” but there are also differences in the types of diatoms found in the two streams.  Most diatomists think about ecology primarily in terms of the chemical environment within which the diatoms live but I think that some of the differences that I see between the diatoms in the River Ehen and Croasdale Beck are a result of the different hydrological regimes in the two streams.

Several diatom species are common to both streams but two, in particular, stand out as being common in Croasdale Beck but rare in the River Ehen.  These are Achnanthes oblongella (illustrated in “Why do you look for the living amongst the dead?”) and Odontidium mesodon.  However, a closer look at the data showed that, whilst both were common in Croasdale Beck, they were rarely both common in the same sample.   If Achnanthes oblongella was abundant, then Odontidium mesodon was rare and vice versa, as the left hand graph below shows.   There were also a few situations when neither was abundant.

Odontidium mesodon from Croasdale Beck, Cumbria, July 2015.  Photographs by Lydia King.

The story got more interesting when I plotted the relative proportions of these two taxa against the amount of chlorophyll that we measured on the stones at the time of sample collection (see right hand graph below).   This gives us an idea of the total biomass of algae present at the site (which, in this particular case, are dominated by diatoms).   Achnanthes oblongella was most abundant when the biomass was very low, whilst Odontidium mesodon peaked at a slightly higher biomass, but proportions of both dropped off when the biomass was high.   I should point out that “high” in the context of Croasdale Beck is relatively low by the standards of other streams that we have examined and this adds another layer of complexity to the story.

When the biomass exceeds two micrograms per square centimetre, both Odontidium mesodon and Achnanthes oblongella are uncommon in the biomass, and the most abundant diatoms are Achnanthidum minutissimum, Fragilaria gracilis or, on one occasion, Cocconeis placentula.   A. minutissimum and F. gracilis are both common in the nearby River Ehen but C. placentula is very rarely found there.

The difference between River Ehen and Croasdale Beck is probably largely a result of the very difernt hydrological regimes, though this is an aspect of the ecology of diatoms that has been studied relatively rarely.   The differences within my Croasdale Beck samples is probably also a result of the hydrology, but reflects changes over time.   I suspect that Achnanthes oblongella is the natural “pioneer” species of soft-water, hydrologically-dynamic streams, and that Diatoma mesodon is able to over-grow A. oblongella when the biomass on stones increases due to prolonged periods of relative stability in the stream bed.  That still does not explain what happens when biomass is high and neither are abundant: the dataset is still small and we need to collect some more data to try to understand this. But the point of the post is mostly to remind everyone of the dangers of trying to interpret the ecology of attached stream algae solely in terms of their chemical environment.   And to make the point that a little more understanding of a natural system often fuels, rather than removes, the sense of mystery that is always present in nature.

a. The relationship between representation of Achnanthes oblongella and Odontidium mesodon in samples from Croasdale Beck between May 2015 and January 2017. Both axes are presented on square-root-transformed scales; b. relationship between representation of Achnanthes oblongella and Odontium mesodon and total epilithic biomass (as chlorophyll a). Lines show a locally-weighted polynomial (LOESS) regression fitted to the data.

Taxonomic note

Odontidium mesodon is the correct name for Diatoma mesodon (see “Diatoms from the Valley of Flowers”).   The name Odontidium had fallen out of popular usage, but Ingrid Jüttner and colleagues made the case to resurrect this genus for a few species that would hitherto have been classified in Diatoma.

Achnanthes oblongella, by contrast, is definitely not the correct name for this organism.  Three other names have been proposed: Karayevia oblongella, Psammothidium oblongella and Platessa oblongella.  The first two are not convincing and I have not yet been able to see the paper describing the third.  It will be interesting to see what a combined morphological and genetic study of this species (or, more likely, complex) reveals.

Reference

Jüttner, I., Williams, D.M., Levkov, Z., Falasco, E., Battegazzore, M., Cantonati, M., Van de Vijver, B., Angele, C. & Ector, L. (2015).  Reinvestigation of the type material for Odontidium hyemale (Roth) Kützing and related species, with description of four new species in the genus Odontidium (Fragilariaceae, Bacillariophyta).  Phytotaxa 234: 1-36.

Wetzel, C.E., Lange-Bertalot, H. & Ector, L. (2017): Type analysis of Achnanthes oblongella Østrup and resurrection of Achnanthes saxonica Krasske (Bacillariophyta). Nova Hedwigia Beiheft (in press).