Close to the edge in Wastwater …

Wastwater_190610

I’m back in the Lake District for this post, standing beside Wastwater, the most remote and least disturbed of England’s lakes and, especially obvious on a sunny day in June, the most spectacularly-situated.  I stood on the western shore looking across to the screes and, beyond to the mass of Scafell Pike, England’s highest peak, looming up in the distance.

When I was done admiring the scenery I adjusted my focus to the biology of the lake’s littoral zone and some dark brown – almost black – marks on the boulders in the littoral zone.  In contrast to the grand vista stretching away to the north, these were beyond unprepossessing and my attempts to photograph them yielded nothing worth including in this post. However, I had seen similar looking marks in Ennerdale Water and there is a photograph in “Tales from the splash zone …” that should give you some idea of what I was seeing.

Under the microscope, my expectations were confirmed.  As in Ennerdale Water, these patches were composed of Cyanobacteria – gradually tapering trichomes of Calothrix fusca and more robust trichomes of Scytonema calcareum, both encased in thick, brown sheaths which, when viewed against the granite boulders on which they lived, resulted in the dark appearance of the growths.  To the untrained eye, these barely look like lifeforms, let alone plants yet they offer an important lesson about the health of Wastwater.

Calothrix_fusca_Wastwater_June19

Calothrix cf fusca from the littoral zone of Wastwater, June 2019. Scale bar: 20 micrometres (= 1/50thof a millimetre)

Though hard to see amidst the tangle of filaments in these population, both Calothrix and Scytonema have specialised cells called “heterocysts” that are capable of capturing atmospheric nitrogen (you can see these in the photographs of Nostoc commune in “How to make an ecosystem (2)”.   Nitrogen fixation is a troublesome business for cells as they need a lot of energy to break down the strong bonds that bind the atoms in atmospheric nitrogen together.   That means that plants only invest this energy in nitrogen fixation when absolutely necessary – when the lack of nitrogen is inhibiting an opportunity to grow, for example.   The presence of these Cyanobacteria in Wastwater is, therefore, telling us that nitrogen is scarce in this lake.

The dogma until recently was that phosphorus was the nutrient that was in shortest supply in lakes, so attention has largely focussed on reducing phosphorus concentrations in order to improve lake health.   Over the last ten years, however, evidence has gradually accumulated to show that nitrogen can also be limiting under some conditions.   That, in turn, means that those responsible for the health of our freshwaters should be looking at the nitrogen, as well as the phosphorus, concentration and, I’m pleased to say, UK’s environmental regulators have now proposed nitrogen standards for lakes.   That marks an important shift in attitude as, a few years ago, DEFRA were quite hostile to any suggestion that nitrogen concentrations in freshwaters should be managed.   In this respect, the UK is definitely out step with the rest of Europe, most of whom have nitrogen as well as phosphorus standards for freshwaters.

Scytonema_crustaceum_Wastwater_June16

Scytonema cf calcareum from the littoral zone of Wastwater, June 2019. Note the single and double false branches.   Scale bar: 20 micrometres (= 1/50thof a millimetre)

Wastwater flows into the River Irt and, a few kilometres down from the outflow, I found another nitrogen-fixing Cyanobacterium, Tolypothrix tenuis.  Once again, I could not get a good photograph, but you can see images of this in an earlier post from the River Ehen in “River Ehen … again”.   Nitrogen fixing organisms, in other words, are not confined to the lakes in this region, which raises the question why the UK does not have nitrogen standards for these as well (see “This is not a nitrate standard …”).   In rivers such as the Irt and Ehen that are already in good condition, it might only take a small increase in nitrogen concentration for the ecology to change.   Whether the loss of these nitrogen-fixing organisms will be noticed is another question.

For now, I am just happy to see that nitrogen in lakes has finally made it to the regulatory agenda.  It has taken about 15 years for the science to percolate through the many layers of bureaucracy that are an inevitable part of environmental management.  Give it another decade and maybe we’ll get nitrogen standards for rivers too.

References

Maberly, S. C., King, L., Dent, M. M., Jones, R. I., & Gibson, C. E. (2002). Nutrient limitation of phytoplankton and periphyton growth in upland lakes. Freshwater Biology. https://doi.org/10.1046/j.1365-2427.2002.00962.x

Moss, B., Jeppesen, E., Søndergaard, M., Lauridsen, T. L., & Liu, Z. (2013). Nitrogen, macrophytes, shallow lakes and nutrient limitation: Resolution of a current controversy? Hydrobiologia. https://doi.org/10.1007/s10750-012-1033-0

P.S. any guesses as to which 1970s prog rock group I was listening to over the weekend?  The clue is in the title.

Advertisements

More algae from Shetland lochs …

Lamba_Water_May19

I’m taking you back in the Shetland Islands for this post, and onto the remote moorlands of northern Mainland.   When I visited this particular loch in 2016, I noticed a lot of slippery filaments of Batrachospermum attached to the sides of the cobbles in the littoral zone (see “Lucky heather …”).   This time around, I explored further around the edge of the loch and, in the south-west corner noticed prolific growths of algae in the shallow peaty water.  Closer inspection showed that these, too, were the red alga Batrachospermum and, though they were not fertile, Dave John suggests that they are likely to be B. turfosum Bory.

Batrachospermum_Lamba_Water_May19

Tufts of Batrachospermum turfosumin the littoral zone of Lamba Water, north Mainland, Shetland Islands, May 2019.   The picture frame is about 15 centimetres across. 

If you have a hand lens you can just about make out a bead-like structure when observing Batrachospermum in the field; however this becomes much clearer with higher magnification.   I think it looks like a bottle-brush when seen under the microscope at low magnification, with whorls of side-branches arising from the central filament.  At higher magnification, these filaments can be seen to have a bead-like structure, with cell size gradually reducing with distance from the centre.

What you cannot do in the field is separate Batrachospermumfrom the closely-related genus Sheathia(see “News about Batrachospermum… hot off the press”).   I usually tell people that, for a general overview of the condition of a stream or lake (for example, as part of the UK macrophyte survey technique), then simply recognising that you have “Batrachospermum” (meaning Batrachospermum or Sheathia) should be enough.   In my experience, the presence of Batrachospermumis usually a good indication that the water body is in a healthy condition.  However, I have been told that Batrachospermumis often found growing prolifically in very enriched conditions in southern chalk streams, which would challenge this assumption.   This may be because the species that are found in southern chalk streams are different to those that I encounter in my more usual haunts in northern England and Scotland.  But it is also possible that the factors I described in “The exception that proves the rule …” pertain in those cases too.

Batrachospermum_turfosum_Lamba_Water

Filaments of Batrachospermum turfosum from Lamba Water, north Mainland, Shetland Islands, May 2019.   The upper photograph shows a low magnification view of a filament (about 350 micrometres, or 0.35 millimetres, wide) whilst the lower image shows a whorl of side branches arising from the main stem.  Scale bar: 20 micrometres (= 1/50thof a millimetre).  

We often run into this dilemma with filamentous freshwater algae: it is reasonably straightforward to identify the genus but we need reproductive organs to determine the species.  As they seem to survive quite happily in the vegetative state our understanding of the ecology of individual species (rather than the genus as a whole) is scant so it is hard to tell whether there is value in that missing information or not.   In a few cases – this is one – better taxonomic understanding has revealed that we may not even be dealing with a single genus but the lists used for applied ecological surveys still persist with the old concepts.

This creates a toxic spiral of consequences: it is hard to split into species so most people don’t bother. Because we don’t bother, our interpretations are based on generalisations drawn from the behaviour of the genus.  This means we don’t generate the data needed to demonstrate the value (or otherwise) of the effort required to go from genus- to species-level identifications.   So we carry on lumping all records to genus (or, in this case, a pair of genera) and accept a few records that our out of line with our expectations as “noise”.  The situation is probably worse in the UK than in many places because there are very few people in universities specialising in these organisms and, as a result, no-one is producing the data that might break us out of this spiral.

We found Batrachospermum turfosum in a few other locations during our visit, but nowhere, even in nearby lochs, was it in such quantity as we saw in Lamba Water.   Chance might play a part in determining its distribution on a local scale but that ought to be the explanation of last resort rather than the go-to answer when we are worryingly short of hard evidence.

 

 

Hyperepiphytes in the Shetland Islands

Gossa_Water_May19

I was lucky enough to spend a couple of days in the Shetland Islands during last week’s spell of warm weather and spent one of my mornings there hiking in shirtsleeves across moorland to a remote loch.   Good infrastructure is a legacy of the Shetland Islands’ association with the oil industry, and this includes a strong mobile network, meaning that I managed to find this particular loch using the Ordnance Survey maps on my smartphone. I would not normally rely upon a mobile signal to navigate across such remote terrain but in Shetland it is often possible.  I would, nonetheless, recommend keeping a paper map and a GPS in your kit just in case, as I did lose the signal on a few occasions during my stay.

Most of the lochs in the northern part of mainland Shetland are shallow, peaty water bodies, with soft water and relatively sparse assemblages of aquatic plants.   Parts of the littoral zone of this particular loch, however, had extensive growths of submerged mosses.  It is a long time since I was proficient at identifying aquatic mosses but these clumps look likeWarnstofia fluitans to me, though I am willing to be proved wrong.  I did try to remove some leaves and have a proper look but that task was complicated by tufts of attached filamentous algae.   In their submerged state, these formed distinct clusters at intervals along the straggly stems of the moss but, once removed, the filaments collapsed to smother the leaves and confound my attempts to run a scalpel blade along the stem.

Warnstofia_Gossa_Water_May19

Submerged colonies ofWarnstorfia fluitans(?) smothered byOedogoniumfilaments in Gossa Water, north Mainland, Shetland (HU 4354 6047). Gossa Water (one of five that share this name in the Shetland Islands!) is illustrated in the photograph at the top of this post.

The filamentous alga proved easier to unmask: the unbranched filaments, reticulate (net-like) chloroplasts and distinctive ‘cap cells’ all identifying it as the green alga Oedogonium.  As is often the case, however, the populations lacked any sexual organs so it was impossible to know which species (see “The perplexing case of the celibate alga“ and, for a rare case of a sexually-mature filament, “Love and sex in a tufa-forming stream”).   Abundant epiphytes can be another feature of Oedogonium: unlike several other filamentous green algae it produces little mucilage which makes it easier for diatoms, in particular, to colonise.  As well as colonies of needle-shaped cells of Fragilaria gracilis there were also several Achnanthidium cells and, entangled around the filaments and the moss, chains of Tabellaria flocculosa.   Given that the Oedogonium was, itself, an epiphyte, these diatoms are ‘hyperepiphytes’, a term that attracts remarkably few Google hits, almost all associated with lower plants.

The ‘cap cells’ are one of the most distinctive features of Oedogonium and results from a distinctive mode of cell division that leaves rings of scar tissue at the point where the two cells split.   That we see four or more of these scars on a few cells whilst the great majority have none suggests that we are looking at a primitive form of specialisation, with a few cells in a filament being responsible for all the cell division.  What is more, these cap cells are also often the ones that form oogonia (see “Love and sex in a tufa-forming stream” for an illustration of this) and asexual zoospores, so there must be something slightly different in the biochemistry within these cells that drives these processes.   However, at this point the formal scientific literature goes strangely silent apart from a single paper published in 1962.  Curiously, the evolution of multicellularity is one of those big questions that attract a lot of top academics (see the reference to a recent paper in Nature Scientific Reports below)  whilst a genus of algae that seem to show some faltering first steps towards specialisation of some cells are largely ignored.  Another case of the “trailing edge” of science?

Gossa_Oedogonium

Oedogonium filaments growing on Warnstofia fluitans in the littoral zone of Gossa Water, north Mainland, Shetland, May 2019.   The arrow on the top image shows the “cap cells”.   Note also the cluster of Fragilaria gracilis(plus a few cells of Achnanthidium) on the lowermost filament and, in the middle image, two of the many cells of Tabellaria flocculosa that were entangled with the Oedogonium filaments and moss stems.  Scale bar: 20 micrometres (= 1/50thof a millimetre). 

Oedogonium_zoospores

A zoospore being released from a filament of Oedogonium.  This series of photographs was taken by me in about 1993 and I have no details of the location from which it came.  The filament is about 40 micrometres (= 1/25thof a millimetre) in diameter.

Reference

Herron, M.D., Borin, J.M., Boswell, J.C., Walker, J., Chen, I-C. K., Knows, C.A., Boyd, M., Rosenzweig, F. & Ratcliff, W.C. (2019).  De novo origins of multicellularity in response to predation.  Nature Scientific Reports 9, Article number: 2328

Rawitscher-Kunkel, E. & Machlis, L. (1962).  The hormonal integration of sexual reproduction in Oedogonium.   American Journal of Botany 49: 177-183.

St_Ninians_tombola_Shetland_May19

Sightseeing in Shetland: the tombolo (sandy isthmus) linking St Ninian’s Isle with Mainland in the Shetland Islands, May 2019.

Buffers for duffers …

In Ecology in the hard rock café I wrote about the challenges of living in an aquatic world where carbon – one of the raw materials for photosynthesis – was in short supply.   What I did not write about in that post is that this carbon also gives freshwater some useful additional properties.   In brief, rainwater is not pure water, but absorbs carbon dioxide from the atmosphere.  This, in turn, makes rainwater slightly acidic and, when it falls onto rocks, this weak acid dissolves the minerals from which the rock is made.  This adds two other forms of carbon to the water – bicarbonate and carbonate (the latter, particularly, from limestone).

Each of these three types of carbon in freshwater can convert to either of the other two types, with the speed of the reaction depending on the balance between the forms (the “law of mass actions”).  In essence, the reactions proceed until equilibrium is obtained, and this equilibrium, in turn, depends upon the pH of the solution.  These processes are summarised in the diagram below.

Relationship between pH and the proportion of inorganic carbon as free carbon dioxide (or carbonic acid, H2CO3 – orange line), bicarbonate (HCO3 – green line) and carbonate (CO32- – blue line).

The chemistry behind this is not easy to explain but a consequence is that any attempt to shift the pH (e.g. by adding acid) causes an automatic adjustment in the balance between the different forms of carbon.  Some of the hydrogen ions that could make the water acid are, instead , bound up as bicarbonate, and the pH, as a result, does not change.  The greater the quantity of inorganic carbon in the sample, in other words, the greater the capacity of the water to resist changes in pH.   The carbonate, bicarbonate and free carbon dioxide together act as a “buffer”, a chemical shock absorber.   Think of it as equivalent to the responsible use of a credit card or savings account to defer the cost of an unexpected bill (a car repair, for example) so that your current account does not go overdrawn.

Because life largely evolved in well-buffered marine systems, the enzymes that run our cells generally work best within a narrow range of pH (approximately 6-9).   Cells – unicellular life forms in particular – get stressed if pH strays outside this range, so the greater the buffering capacity, the easier it is for cells (life at high pH can bring additional complications, but we don’t have time to go into those here).  “Alkalinity”, as I mentioned in the earlier post, is the measure that ecologists use to assess the strength of the buffer system in a lake or river.  The principle of the measurement is straightforward: we add a dilute acid very slowly and watch what happens to the pH.   At first, nothing happens but, as soon as the water’s natural buffering capacity has been exceeded, pH drops rapidly.

I have a small portable alkalinity titration kit which involves adding drops of bromophenol blue indicator to a sample of stream or lake water.  This gives the water a blue colour when the pH is greater than 4.6.  As the pH falls, the solution becomes colourless and, eventually, turns yellow.   If you look at the graph above you will see that, at pH 4.6 most of the bicarbonate (HCO3) has been converted to carbon dioxide so the buffering capacity is pretty much non-existent.  This means that I can use the quantity of acid that is needed to make the bromophenol blue change colour as a measure of the buffering capacity of the water.

Alkalinity titrations beside Ennerdale Water (see top photograph) using a Hanna HI 3811 alkalinity test kit.  The right hand image shows acid being added to the water sample with a 1 ml pipette.  The blue colour shows that pH has not yet dropped below 4.6.

All this talk of chemical equilibria seems to be a long way from the natural history that is the core business of this blog.  Yet, at the same time, these reactions describe natural phenomena every bit as real as the plants and animals that attract the interest of naturalists.   Geology and chemistry ultimately create the context within which biology flourishes, but it is rare to meet a chemist who can talk with a naturalist’s passion.  I think that this is partly because chemistry tends not to describe tangible features of the landscape but, instead, quickly gets lost in abstract equations.  However, it is also a matter of culture: chemists need clinical separation from the mud and filth to maximise precision, whilst ecologists feel the lure of the field.  There is, nonetheless, a very basic and necessary link between the chemistry and ecology of aquatic systems.   Geology may shape a landscape but chemistry is one of the key mediators that determines the types of plants that cloak the hills and vales.  We ignore it at our peril.

Reflections from a Romanian lake

lac_Calbarusani_June16

If you have followed my blog for some time you will know that two of my professional interests are ensuring consistency in the implementation of environmental legislation across the European Union and trying to make ecological assessment as straightforward and understandable as possible. These two interests sometimes collide briefly, particularly when I am travelling, as I have an urge to grab a sample from lakes and rivers that I pass and to make a quick judgement on their quality (see “Lago di Maggiore under the microscope” and “Subsidiarity in action”).   This isn’t quite as straightforward as it seems, as my specialism requires use of a microscope, and travelling light precludes carrying my field microscope on my travels.   Instead, I bring small, discrete samples home and have a look at the diatoms in their live state.  Enough are usually recognisable to allow me to make a rough calculation of the indices that we use to evaluate ecological status.

My visit to Romania included a trip to Lacul Cāldāruşani, on the flat lands of the Wallachian Plain about 40 kilometres north of Bucharest. It is a shallow lake, fringed by reeds (Phragmites australis) and it was from these that we collected our sample.  The reed stems were all smothered with the green alga Cladophora glomerata which, in turn, hosted a rich diatom flora.   Many of these could be either identified, or a plausible guess at their identity made, from the live state, so I was able to make a list of diatoms and, from this, to calculate the indices that we use in the UK to assess the quality of lakes.   My conclusion was that that this was definitely an enriched lake, some way below the standards set by the Water Framework Directive, which agreed with the evidence that my Romanian hosts already had.   That I can travel from near the western edge of the European Union to the eastern edge and still make a robust inference of the quality of the lake says much for the robustness of the methods with which we are dealing.

The most abundant diatom in the sample was Cocconeis pediculus, which lives on the surface of the Cladophora filaments.  This means that it is, in this case at least, an epiphyte on an epiphyte, as the Cladophora was, itself, growing on the reed stems.  Rhoicosphenia abbreviata is another diatom that lives epiphytically on Cladophora, and this was also common in the sample.  As well as these, there were at least three species of Encyonema, mostly free-living but a few in tubes, plus Navicula tripunctata and at least one other species and a few cells of Epithemia sorex.   There was also a rich assortment of green algae, but I had only limited time to dedicate to this sample, so these will have to wait for another day.

Cocconeis_on_Cladophora_Jun

Cladophora-smothered sections of submerged stems of Phragmites australis collected from Lacul Cāldāruşani, Romania, June 2016; b. and c. Cocconeis pediculus growing on living and dead filaments of Cladophora glomerata from Lac Cāldāruşani. Scale bar: 10 micrometres (= 1/100th of a millimetre).

Caldarusani_diatoms_June16

Diatoms from Lac Cāldāruşani, Romania, June 2016: a. two cells of Rhoicosphenia abbreviata on a stalk; b. Navicula sp.; c. Navicula tripunctata; d. Epithemia sorex; e. Encyonema sp (E. silesiacum?) growing in mucilaginous tubes.  Scale bar: 10 micrometres (= 1/100th of a millimetre).

One difference between this lake and most lakes in the UK is that the Romanians have a taste for a far broader range of freshwater fish than we do.  We enjoy salmon and trout, but there is not much enthusiasm for eating other freshwater fish here, in contrast to many parts of central and eastern Europe where fish such as carp are both farmed and eaten (we, in the UK, seem to have lost that taste, as many ruined monasteries have “carp ponds”).   Lac Cāldāruşani has a commercial fishery, and this probably contributes to the poor quality of the water.   Many shallow lakes and ponds are stocked with carp in the UK too, but for angling, not commercial fisheries.   Many of these are too small to feature on the regular monitoring programs (which only covers water bodies that are at least 50 Ha in size).   Carp, however, are fish that like to root around in the mud for food and, in the process, stir up the sediments releasing nutrients back into the water where they can be used by algae.   The algae, in turn, die and sink to the bottom where they decay and release the nutrients back to the water, only for another carp to stir them up again.  These shallow lakes are, in effect, not just polluted by this year’s inputs of nutrients, but also by pollution from the preceding decade, which is constantly being recycled as the fish search for food.

From here, we climbed back into the car to visit one other lake.  The story of that lake, however, will have to wait for a future post.

References

More details about the methods for assessing lake ecological status using diatoms in the following two papers:

Bennion, H., Kelly, M.G., Juggins, S., Yallop, M.L., Burgess, A., Jamieson, J. & Krokowski, J. (2014).  Assessment of ecological status in UK lakes using benthic diatoms.  Freshwater Science 33: 639-654.

Kelly, M., Urbanic, G., Acs, E. Bennion, H., Bertrin, V., Burgess, A., Denys, L.,  Gottschalk, S., Kahlert, M., Karjalainen, S.-M., Kennedy, B., Kosi, G., Marchetto, A., Morin, S., Picinska-Fałtynowicz, J., Poikane, S., Rosebery, J. Schoenfelder, I., Schoenfelder, J., Varbiro, G.(2014). Comparing aspirations: intercalibration of ecological status concepts across European lakes for littoral diatoms.   Hydrobiologia 734: 125-141.

How to make an ecologist #7

sampling_plankton_Loch_Earn

Casting a plankton net to collect algae, somewhere in Scotland (possibly Loch Earn), April 1985.

At some point between leaving Westfield as a rookie ecologist with an enthusiasm for Sphagnum, and finishing a PhD on mosses at Durham I started the slow metamorphosis into a phycologist.   Brian Whitton expected his PhD students to help out in undergraduate practicals and my lack of phycological training up to that point was not regarded as sufficient reason to excuse me from this duty.   It was a steep learning curve but, in turn, it opened windows onto new worlds that have kept me fascinated ever since.

Brian had an old school natural historian’s approach to undergraduate practicals.   Technicians were sent out to local ponds and came back with handfuls of vegetation which were squeezed and scraped to yield rich harvests of algae. At the start of the practical, no-one had any idea which species might be present; three hours later, with the help of a handful of books in a range of languages (we just looked at the pictures) and cajoling from Brian, the demonstrators, at least, emerged older and wiser.

Straight after Easter, the third year botany students were taken on a week-long field trip to Loch Lomond, staying at University of Glasgow’s Rowadennan Field Centre, and learning about algae at a time when most of them would really have preferred to be getting on with revision for their finals.   However, once they arrived at the field centre, set amidst the forests on the east shore of Loch Lomond in the shadow of Ben Lomond, they usually mellowed.   It was a glorious location. We went out to various lochs and streams, sampled different habitats, collected a few environmental measurements, and then spent time in the laboratory trying to name what we had found.   In the evenings most of us made the three kilometre walk to Rowardennan Hotel for a pint of beer.

On one of the days we made a long excursion, down the east shore of Loch Lomond, then up the west shore, making a short diversion at Tarbet to Loch Long, the only sea loch we visited during the week. Then it was back into the vans and up to the north end of Loch Lomond, stopping at a stream in Glen Falloch before sampling Loch Lubhair and Loch Linhe. The final leg swung south past Loch Venachar to Lake of Menteith in the Trossachs (‘the only lake in Scotland’) before returning to Rowardennan in time for dinner. In one long day we had seen marine and freshwater habitats, sampled hard and soft streams and lakes, planktonic and benthic habitats and seen seaweeds as long as our arms and microscopic algae a 100th of a millimetre in diameter.

Rowardennan_April1985

Durham University botany undergraduatest getting to know freshwater algae at Rowardennan Field Centre, April 1985.

At this time, the Durham botany degree was strong on biochemistry and molecular biology and notoriously light on traditional botanical skills.   There was a running joke during my postgraduate years that some of our molecular biologist colleague’s plant identification skills ran no further than reading the label on a packet of seeds. Reductionism ruled, with teaching on whole plants and their interactions with the environment pushed to the edges of the course.   The honours botany students were taken on a two week field course to Austria at the end of their second year to learn about alpine plants. This week in Rowardennan dealt with the 75 per cent of UK’s plant diversity that has now dropped off most undergraduate curricula over the past couple of generations. And, once again, the demonstrators, acting as intermediaries between Brian’s extensive knowledge and the near complete ignorance of the students, were probably the principal beneficiaries.

There were other beneficial outcomes to the course. I spent long hours walking to and from the pub sharing our experiences of travelling in the Himalayas with one of the students.   This same individual (and her distinctive orange cagoule) cropped up in more of my photographs than a hypothesis concerning the random distribution of students on 35 mm film would predict.

Reader, I married her.

Durham_botany_fieldtrip_Apr

Durham undergraduates sampling a stream in Scotland during the algae field course, April 1985.

Unmasking the faceless Eurocrats …

Derwent_Water_July2015

My own small contribution to the campaign to keep the UK in the European Union takes the form of a scientific paper. This will probably not raise many eyebrows outside the small band of specialists amongst whom I work but it offer it as an antidote to the rhetoric of the anti-EU campaigners and their scaremongering about the Brussels bureaucracy. I have made no secret that I am pro-EU (see “What has the European Union ever done for us?”) and that I think the UK benefits from EU environmental legislation. What one person thinks to be sensible regulation can easily be portrayed by the disingenuous as excessive red tape peddled by faceless, unelected Brussels bureaucrats.

Our paper deals with about half a sentence in an annex of an 80 page Directive that deals with how EU Member States should assess the quality of lakes.   Should the suspended algae, the attached algae and the larger plants be used to assess lake condition, or can you get the same outcome by just using two of these three components? Interpretation of those few words can, however, result in considerable and recurring expense for a large Member State such as the UK.   Opinion on how they should be interpreted differed between the 28 countries of the EU.   How do you find the balance between the environmental risks associated with lax interpretation of EU law and the extra costs that a stringent reading of the Directive would entail?

I was contracted, along with two colleagues, by the European Commission’s Joint Research Centre to look into this issue by examining the datasets of those countries that had analysed all three components to see how much extra information additional types of monitoring added to a manager’s overview of lake condition.   One additional twist to the problem was that my own particular specialism, the attached algae, was the Cinderella at this particular ecological assessment Ball, with about 60% of EU states deciding that these were not necessary.   Ironically, my career as Fairy Godmother to fellow algal specialists was extremely short-lived, as the outcome of our analyses was that, if a lake had a problem, it could usually be detected using the suspended algae and higher plants (the “ugly sisters” … metaphor overload .. no more of this, I promise).   There are situations when all three are needed to understand how to manage a lake but, for strategic overviews of the condition of a country’s lakes, little was gained by including them.

So what has all this got to do with our EU referendum?   In brief, this was a matter of interpretation discussed by representatives of all Member States at meetings mediated by European Commission representatives.   Having identified a difference of opinion, they brought us in to work on an evidence-based solution which was then discussed, in depth, at another meeting of national representatives (mostly ecologists). Many agreed with our conclusion; a few made the case for continuing to use all three components.   Ecological arguments were put forward by both sides but, in essence, we were debating whether this was an issue that should be decided within or between Member States.   Most were happy that this level of detail could be determined within Member States.   Even if the outcome had been in favour of imposing a more rigorous interpretation of the Directive, it would have been the consensus of Member States enacted through the Commission, not a blanket edict from these (hypothetical) faceless bureaucrats that the right wing press constantly demonises.

An interesting coda to this story is that after our report had been circulated and discussed my colleague at JRC was contacted by people from one Member State who were slightly alarmed by the conclusion.  The point that they made was that devolving responsibility to individual countries would lead to many dropping the use of attached algae, simply on the grounds of financial expediency. I had some sympathy (one of the authors was a fellow consultant who, like me, makes part of his living from this type of work) but it also touched on something that has been exercising my mind over recent months.   Do countries use this type of monitoring because they have to (i.e. the Directive tells them to) or because they need to (i.e. it contributes valuable information to lake management)?   It shifts the onus on us, as advocates of a sub-discipline, to make a reasoned case for the continued use of attached algae, rather than simply assume that “Brussels” will guarantee our livelihood.

Note: the photograph shows Derwent Water in the English Lake District, looking south from Friar’s Crag, July 2015.

Reference

Kelly, M.G., Birk, S., Willby, N.J., Denys, L., Drakare, S., Kahlert, M., Karjalainen, S.-M., Marchetto, A., Pitt, J.-A., Urbanič, G. & Poikane, S. (2016). Redundancy in the ecological assessment of lakes: Are phytoplankton, macrophytes and phytobenthos all necessary? Science of the Total Environment http://dx.doi.org/10.1016/j.scitotenv.2016.02.024.