Concentrating on carbon …

On the other side of Ennerdale Water I could see plenty more submerged stones, all covered with green filaments but these belonged to different genera to those that I wrote about in my previous post.   Both are genera that we have met previously – Mougeotia, which has flat, plate-like chloroplasts which rotate around a central axis in order to control its rate of photosynthesis – and Spirogyra.  When light levels are low, Mougeotia’s flat chloroplast is perpendicular to the light in order to capture as much energy as possible, but in bright light it rotates so that the plate is parallel to the direction of the light, in order to slow the photosynthesis mechanism down and prevent internal damage (see “Good vibrations under the Suffolk sun” for another approach to this problem).

However, too much sunlight is the least of an alga’s problems in the Lake District.   This post looks at a different challenge facing freshwater algae and our starting point is the spherical nodules, “pyrenoids”, that you should be able to see on the chloroplasts of both Mougeotia and Spirogyra in the images below.   Photosynthesis involves a reaction between water and carbon dioxide to make simple sugars (turning fizzy mineral water into “pop”, in other words).   A submerged alga does not have a problem obtaining the water it needs, but what about carbon dioxide?   Gases are not very soluble in water, so this presents a much bigger problem to the algae.   Explaining why also presents a big problem to a blogger who conscientiously avoided physics and chemistry from age 16 onwards.  Here goes …

Mougeotia from the littoral zone of Ennerdale Water, April 2017.  Scale bar: 20 micrometres (= 50th of a millimetre).

The concentration of a gas in a liquid depends upon the concentration of that gas in the surrounding atmosphere.   As far as we know (and this is still an area of contention amongst geologists), concentrations of carbon dioxide in the deep past were much higher than they are today, in part because there were no land plants to suck it out of the atmosphere for their own photosynthesis.  So the earliest photosynthetic bacteria and, subsequently, algae, lived in water that also had higher concentrations of carbon dioxide.   As land plants spread, so the carbon dioxide concentration in the atmosphere dropped as they used it to fuel their own growth.  As a result, carbon dioxide concentrations in the water also dropped, thus depriving the algae of an essential raw material for photosynthesis.

However, carbon dioxide is not the only source of carbon available to aquatic organisms.   There is also carbon in many rocks, limestone in particular, and this can mineralise to carbonate and bicarbonate ions dissolved in the water.  Aquatic plants can get hold of this alternative carbon supply via an enzyme called carbonic anhydrase.   By concentrating the carbonic anhydrase activity in a small area of the chloroplast, the algal cell can boost the activity of the Rubisco enzyme (which evolved to function at a higher concentration of carbon dioxide).   This whole process is one of a number of forms of “carbon concentrating mechanism” that plants use to turbocharge their photosynthetic engines (see “CAM, CAM, CAM …” on my wife’s blog for more about a terrestrial version of this).

A two-chloroplast form of Spirogyra from the littoral zone of Ennerdale Water, April 2017.  Scale bar: 20 micrometres (= 50th of a millimetre).

Pyrenoids are widespread amongst algae, though a few groups (notably red algae and most chrysophytes) lack them.   Cyanobacteria (blue-green algae) use an organelle called a “carboxysome” for a similar purpose.   The only group of land plants with pyrenoids are the hornworts, relatives of mosses and liverworts.   About half of all hornworts have pyrenoids and a recent study has suggested that the ability to form pyrenoids has evolved up to five times in this group during their evolution.   The appearance of pyrenoids in distinct evolutionary lineages of algae also suggests that there may have been several evolutionary events that precipitated their formation.  And, it is important to stress, some algae which lack pyrenoids have alternative methods of concentrating carbon to enhance Rubisco activity.

So let us end where we started: in the littoral zone of Ennerdale Water on an April morning, gazing at a fine “fur” of filamentous algae clinging to the submerged rocks.   Back in October last year, I talked about how Ennerdale fitted into a pattern of increasing productivity of Cumbrian lakes first noticed by Pearsall in the early part of the 20th century (see “The power of rock …”).   Now we can start to understand that pattern in terms of basic biochemical processes: getting enough carbon from a combination of atmospheric carbon dioxide and the surrounding rocks for Rubisco and the other photosynthetic enzymes to convert to sugars.   In Ennerdale Water, one of the least productive of the Cumbrian lakes, we can see these algae during the winter and spring because the amount of biomass that those biochemical reactions produces is still just ahead of the amount that grazing invertebrates such as midge larvae can remove.  In a month or so, the grazers will have caught up and the rock surfaces will be, to the naked eye at least, bare.

Rubisco is the enzyme whose gene, rbcL, we use for molecular barcoding, subject of many recent posts (see “When a picture is worth a thousand base pairs …”).  My early desire to avoid physics and chemistry at school translated into as little biochemistry as possible whilst an undergraduate and, over the past few-years, I’ve developed a frantic urge to catch-up on all that I missed.   Just wish that those lectures explaining the Calvin cycle had been a little less … tedious …

References

Giordano, M., Beardall, J. & Raven, J.A. (2005).  CO2 concentrating mechanisms in algae: mechanisms, environmental modulation, and evolution.   Annual Review of Plant Biology 56: 99-131.

Villareal, J.C. & Renner, S.S. (2012).  Hornwort pyrenoids, carbon-concentrating structures, evolved and were lost at least five times during the last 100 million years.  Proceedings of the National Academy  of Science of the USA 109: 18873-18878.

 

Advertisements

Fifty shades of green …

ennerdale_161005

Last week took me back at Ennerdale Water in the Lake District to see how the algae in the littoral zone had changed since my previous visit (see “Both sides now …”).   Back in July, we had found very few algae visible with the naked eye at most of the sites around the margin that we visited; three months on, the situation is very different, with obvious growths at many locations.  As Ennerdale is a remote lake with few human influences, any changes we see are likely to be the result of natural processes rather than “pollution”, so that makes the rapid increase in quantity of algae very intriguing.

One location was particularly intriguing: it was on the south west shore, where the steep scree-laden slope of Crag Fell enters the lake.  The littoral zone has some large stable boulders washed by waves blown down the lake from the high fells to the east.   The boulders had a covering of mosses on their upper surface and this moss, in turn, had been colonised by green algae.

Under the microscope, these growths were revealed to be the filamentous green alga Mougeotia, a relative of Spirogyra, which I have written about in a number of previous posts (it is often common in the River Ehen, for example, which flows out of Ennerdale: see “The River Ehen in February”).   The curious aspect of this particular population was that there were signs of sexual reproduction.   Mougeotia, along with Spirogyra and many other filamentous green algae, is usually observed in the vegetative state (see “The River Ehen in March” and “The perplexing case of the celibate alga”).

mougeotia_ennerdale_oct16_

Boulders in the splash zone of Ennerdale with growths of Mougeotia over mosses (left) and growing directly on the rock surface (right).   The top photograph shows a view from Kirkland across Ennerdale with Great Gable in the background.

mougeotia_conjugating_1

Filaments of the green alga Mougeotia in an early stage of conjugation, with papilla growing from the lower filament towards the upper one.   Scale bar: 20 micrometres (= 1/50th of a millimetre).  

Conjugation involves cells in two adjacent filaments developing outgrowths (“papilla”) that meet and fuse, creating a copulation canal between the two cells.   The cell contents (“protoplasts”) of both cells contract and then they both moves, amoeba-like, into the canal where they fuse  to form a zygote.

The image above suggests that the upper filament may be playing hard to get, rebuffing the amorous advances of the lower filament.   I don’t know enough about conjugation of these algae to know whether the enthusiasm for sex differs between filaments, but it is also possible that what I photographed is an artefact of filaments that may well have been establishing cosy relationships with neighbours before being dragged first from the lake and then onto a slide for my voyeuristic pleasure.   What may have been, in Ennerdale, a patchwork of stable relationships between filaments becomes, amidst the chaos of sampling and slide preparation, a picture of phycological bacchanal.

The lower picture shows a later stage of conjugation, with a zygote forming in the copulation canal.  The process takes place in three dimensions and it was difficult to obtain a crisp image, even using Helicon Focus stacking software but it gives an idea of what is taking place.  The zygote will, eventually, form a tough exterior wall and sink to the bottom of the lake where they will survive until conditions become favourable again.

mougeotia_conjugating_2

Filaments of Mougeotia at a later stage of conjugation: the cell contents are in the process of fusing to form a zygote.   Scale bar: 20 micrometres (= 1/50th of a millimetre).  

The question I have been asking myself is why this particular population has chosen to conjugate at this particular time and place.   I have visited the River Ehen regularly since 2012 and have found Mougeotia or relatives on almost every visit, yet this is the first time that I have seen conjugation.   There are various theories: low nitrogen concentrations have been suggested as something that promotes conjugation in Mougeotia’s relative Spirogyra, but this is unlikely to be a factor in a nutrient-poor lake such as Ennerdale.  A more likely explanation may be found in the graph below, which shows lake levels in Ennerdale over the past year.

ennerdale_lake_levels

Lake levels in Ennerdale Water (from www.riverlevels.uk, measured at NY 088 153, near the outflow to the River Ehen) for the year preceding our visit in October 2016.  

The alga had been growing, remember, in the splash zone.  If you look at the graph, you will see that the lake had recently been almost 30 centimetres higher than it was now and, indeed, had fluctuated quite a lot over the past month or two.   My suspicion is that falling lake levels, and the accompanying risk of drying out, may also have been a factor for initiating conjugation.  Another possibility is that this is a seasonal occurrence that I was fortunate enough to stumble upon, and there is some evidence that dormancy is related to temperature, possibly allowing the zygotes to overwinter in the bottom muds before the increased solar radiation in the spring initiates germination, followed by meiosis (reduction division) to produce the germlings from which next season’s filaments will grow.