How to win the Hilda Canter-Lund competition (4)

Daniella Schatz’ image of the coccolithophore Emiliania huxleyi is one of a relatively small number of electron micrographs to have made it to the shortlist of the Hilda Canter-Lund prize and, though not an outright winner, it offers some useful lessons to anyone considering submitting an image in next year’s competition.

The first point to note is that Daniella has not submitted a single image, but a montage of two separate images. The competition rules state that “basic image enhancement (i.e. cropping, adjustment of contrast, colour balance etc) is permitted, along with focus stacking and stitching. However, excessive image manipulation is not acceptable.”   “Excessive image manipulation” is not easy to define; however, Daniella’s montage worked for the judges because the two elements together tell a story about the life of this alga.  The left- and right-hand images are the “before” and “after” cases of a major factor controlling the ecology of Emiliania huxleyi.  Daniella wanted to tell the story of the decline and fall of E. huxleyi blooms in the oceans; in the process she also evoked a long tradition of memento mori – artworks that remind viewers of their own mortality, and of the fragility of all life on earth. Another montage, this time by Alizée Mauffey, made it to the short list in 2017; again, the images were not selected and placed for aesthetic reasons, but to illustrate the range of functional traits within intertidal macroalgae.

Daniella piles on a little more “image manipulation” by using false colour to highlight the tiny EhV201 virus cells that are scattered across the right hand cell and which are responsible for its sorry state.  A couple of SEMs that have been enhanced by false colour are submitted each year but the artificiality of the medium rarely results in a major improvement to the image.  The stark monochrome of SEMs places them in a long and noble tradition of black and white photography that should not need this type of enhancement.   She, however, challenges this by using false colour very sparingly and to draw attention to an important element of her story.

And so to the “story”: we now ask all entries to the competition to be accompanied by a legend of about 100 words explaining a little more about the picture.   Most experienced phycologists will recognise the left hand image as a coccolithophore but many viewers will see these as abstract geometric shapes. The legend is important to help the viewer decode these shapes and place them into a broader context; in this case, by emphasising their role in global carbon cycling.  Having said that, most of the shortlisting takes place without reference to the legend with initial screening based primarily on the quality of the images.  I do remember, however, that Daniella’s image was one where we did need the legend in order to understand what she was trying to say.

A detail from Daniella Schatz’ Scanning Electron Micrograph (SEM) of the coccolithophore Emiliania huxleyi showing the large dsDNA Emiliania huxleyi virus (EhV201, coloured orange). EhV is a large dsDNA virus that is responsible for the demise of vast oceanic blooms of E. huxleyi. During viral infection the cells undergo programmed cell death and shed their coccoliths, important components of the carbon cycle.  The individual viruses are each about 100 nanometres (1/10000th of a millimetre) in diameter.

We also encourage photographers, particularly those submitting microscopic images, to include a measure of scale in the legend, particularly for microscopic images.  This is important, as lay audiences will have little idea about the size of the objects that are being portrayed.   When images are used as illustrations, then a scale bar is appropriate (see “The stresses of summertime …” for a recent example); however, a scale bar is likely to be an unwelcome intrusion in an otherwise balanced composition so a sentence in the legend is usually more appropriate.   Remember that the term “micrometre” might not be easily understood by many viewers, and it is a good idea to explain dimensions in millimetres as well.

When the votes were counted in 2015, Daniella’s image lost out to Günter Forsterra’s stunning view of the Beagle Channel off the coast of Chile.  However, it stands as a fine example of conceptual approach to the Hilda Canter-Lund competition – with several different elements combining to convey an idea that is more than the sum of its parts.   The photographer of the microscopic world rarely has the luxury of the “decisive moment” and, instead, the quality of the final image often lies as much in post-production as it does in image capture.


Hilda Canter-Lund competition 2017 winners

The winner of the 2017 Hilda Canter-Lund photography competition is Chris Carter for his image of the desmid Pleurotaenium coronatum var. robustum.   This is the second time that Chris has won the competition and his fifth time on the shortlist, confirming an already impressive reputation as a photographer of the algal world.   This particular image is of a specimen that was collected whilst on holiday in Newfoundland, Canada, and preserved in formalin.  This led to the loss of chloroplast colour but which, in turn, made the pore field at the end of the cell more obvious.

The technical skill behind this image is not immediately obvious unless you know the genus Pleuotaenium typically consists of cylindrical cells several times longer than wide.  This particular specimen is 45 micrometres (about 1/20th of a millimetre) in diameter but is almost half a millimetre long.  The challenge was increased because the 100x magnification oil-immersion objective which he used has a very shallow depth of field.  Chris had to suspend the cell in dilute jelly in a cavity tank not much deeper than its length.  Having done this, he agitated the cell with a length of fine wire and once it was no longer horizontal he could manipulate it by gently sliding the coverslip relative to the cell.  The photograph which won the competition is one of many attempts and, even so, Chris commented that the cell is probably a degree or so away from vertical even here but, he went on: “I thought the lighting was actually quite attractive with the bronze hue of the preserved wall contrasting with a blue tinge from the light source; even the very slight tilt perhaps suggests a monster (or a something) rising out of the deep.”

Pleurotaenium coronatum var. robustum.  The top left image is an apical view, showing the pores and the radial ring of tubercules (knobbly projections).  The lower image shows the cell in plane view.   All images by Chris Carter.

Chris Carter, Hilda Canter-Lund prize winner, 2013 and 2017.

The second prize this year was also awarded to a former winner.  Tiff Stephens won the competition last year with her photograph of Durvillaea antarctica in the intertidal zone of the sub-Antarctic Snares Islands.  This year, it was her photograph of the red alga Bonnemaisonia clavata that caught the judge’s eye.   This is a very different style of photograph to her winning entry from last year, taken using an Olympus DP20 camera on a dissecting microscope.   The row of spheres along the secondary axis (“stem”) contain female reproductive cells and the prominent branchlet in the centre right is 1.5 mm long.

“Cystocarp Central”: Tiffany Stephen’s winning entry for the 2017 Hilda Canter-Lund photography competition. 

Though the style of the picture is very different to last year’s entry, it shares with that image an encapsulation of the “decisive moment” (see “How to win the Hilda Canter-Lund competition”). Tiff comments that many of her images are “opportunistically taken while sprinting around doing fieldwork”.  In this particular case, she was on a fun dive outside of Victoria, British Columbia (Canada), collecting seaweeds to look at later, with a view to possibly making herbarium pressings.   She saw dense lumps of Bonnemaisonia clavata, a species with which she was not familiar, at depths between 5 and 10 metres on semi-exposed reefs and collected some to have a closer look later.

The two images represent the two extremes of photographing the microscopic world: Chris applied a great deal of technical skill and ingenuity to create an aesthetically-pleasing image from difficult subject matter whilst Tiff saw an elegant composition drift into view as she scanned around recently-collected field material.  Both photographers have an “eye” for a good composition and the patience and technical skill needed to capture a fine image when the occasion final presented itself.   They are also – and this is important – keen field scientists, grabbing samples out of sheer curiosity and then marvelling as new and fantastical worlds open up to them under the microscope.  Both worthy winners and, with John Huisman (winner in 2014, shortlisted five times), now form algal photography’s “superleague”: the people to beat in 2018!

Tiff Stephens surrounded by Macrocystis in Alaska earlier this year.  Follow Tiff on Twitter at @tiffanybot to see more examples of her photography.

How to win the Hilda Canter-Lund competition (3)

My two previous posts on the qualities that make a great image of an alga focussed on the ascetics of the image itself, and also identified major technical problems that confront those of us who want to take images of the microscopic world.   At this point, my own ability to write authoritatively on the subject peters out, so I have asked Chris Carter, who won the competition in 2013 and was shortlisted in 2010, 2011 and 2015, to write a guest post in which he shares his own extensive experience.

“Everything in optics is against the microscope photographer”: a guest post by Chris Carter


Everything in optics is against the photographer of the microscopic world, and the algal photographer in particular. Without cheating, there is limited scope to choose what is (or is not); in the field of view; the depth of focus is usually tight; the object size rarely matches the available field; no microscope objective can match the usable pixel count of a modern camera lens in conventional photography, and colours are, to say the least, difficult. Transmitted light photography has the additional problem of Beer’s law (remember!): make an object three times thicker and it will let through a ninth of the light, creating problems with the dynamic range.

The bottom line is that “adjustments” and some degree of image manipulation are necessary but these, in turn, place an onus on the photographer not to be dishonest with either the viewer or the organism.  The extent to which image manipulation is acceptable will depend upon whether the image is for a respected scientific journal, a competition, or for a Christmas Card. We cannot be too purist: the camera always lies and a modern digital camera works wonders in the background; what is colour anyway but an illusion derived from the eye and brain? For the holiday snapshot you are allowed to move the glass of beer out of the field of view first but you are not allowed to paste in a missing family member (or vice versa!) later. For the microscope image I suggest it is acceptable to remove objects that are spurious (e.g. floating limescale) and to use software tools to fuse images of the same object tastefully and honestly in the horizontal and vertical planes. In contrast, it is all too easy to add objects to an image to give a nice montage (e.g. of sparsely distributed planktonic forms) or to use false colours in an area that can be defined exactly by some other method. Similarly, other ‘composite’ images ( e.g. two views of the same object) have a place but may be difficult to make visually pleasing.

So, how do we go about this? The first necessity is to use a good image processing software package: there are lots of them and it isn’t easy to choose. I use Adobe Photoshop CS6. The first steps in processing a single image are to get the colours about right (there are separate sliders for each of the primary colours and filters for warming and cooling); for an image in transmitted light there will be overly dark and overly bright areas which the ‘shadow-highlight’ tool may fix easily. In more difficult cases adjustment the parameter ‘gamma’ can help: this tries to scale the dynamic range in the image to what is seen by the eye and to what comes over in a print or on a monitor: it is merely overcoming the limitations of the electronic and optical gadgets in use. Similar actions are performed by the ‘curves’ and ‘levels’ control: each allows the user to choose which colours and in which intensity to best convey information about the object in an aesthetic way whilst not wrecking its essential nature. At each pixel and in each primary colour the data will be stored as a (usually) 8 bit number giving 255 levels in total.  These levels need not be evenly spaced; ‘gamma’ for example can give more emphasis to the dark or the light areas whilst the other settings control which levels are used. Most digital cameras will be doing this in the background (even on a ‘raw’ setting) but my own camera does no pre-processing at all, which has advantages and disadvantages.

So much for colour: but there are still issues associated with depth of focus and field of view that need to be sorted out; these are both relatively easy to overcome technically but can create a considerable amount of work and have the potential to create taxonomic and artistic mayhem. I use two methods for producing images with an extended depth of focus both using separate images taken over the range of focus that is needed. The first is to use a ‘stacking’ software package such as ‘Helicon Focus’ (but there are others) and the second is to make use of ‘layers’ in Photoshop: each of these methods has its pros and cons but both need honesty and good sense as well as an eye on the “why am I doing this?” question.

Stacking with Helicon Focus tends to work better at lower magnifications: with a x100 oil objective curvature changes rapidly with focus and great care is needed; the software is easily confused and I did once introduce an extra row of punctae into a diatom! Good results at low magnification can be obtained with macroalgae such as the stoneworts, but even here taxonomic information can be lost in the process (e.g. the height difference between the primary and secondary cortex rows and the location of the spine cells). As I hinted above, there is always an ongoing and unresolved tension between the artist, the microscopist and the taxonomist!  At intermediate magnifications an image produced using Helicon Focus can look overly flat and artificial, despite being sharp. My own approach is to use a gentle touch to produce pictures that are primarily useful but very occasionally develop into an artistic masterpiece! By contrast, using “layers” in Photoshop requires human intervention to ‘paint in’ the wanted parts of different images.  For example, the desmid Micrasterias will rarely present in a sufficiently flat plane for a good image at high magnification; however, it is easy to judge what is closest to reality and to blend this in. Even here there are pitfalls: the end of the polar lobe in some species is normally out of plane or twisted….so again, what is the image for? A similar comment applies to the colonial green alga Pediastrum in which the peripheral cells have horns that are alternately up and down and the central cells often have surface granules.


The desmid Micrasterias crux-melintensis has many named forms and is fairly easily recognised.  It will never sit flat enough for a x100 oil lens but in this case nothing is lost by tasteful flattening with Helicon Focus  and layers. Or is it? How many people have seen the somewhat surprising apical and side views? (No wonder it does not sit flat!). These extra views show the need for gamma adjustment and colour correction since light beams will be modified after passing through such an object. Is this composite image of artistic or of taxonomic value only? The face view is made of 17 sub-images processed as two semi-cells that were stitched using Photoshop layers; some correction to colours and levels was also necessary.


There are many forms of Pediastrum boryanum but this is a particularly pretty one from Ulva growing on a wet cliff face; the red walls are real (perhaps manganese as suggested by Brian Whitton). This image borders on “cheating”: it was entered (no success) for a national wildlife contest but not for Hilda Canter-Lund competition (I don’t think she would have approved!). Should the horns have been flattened or left as obviously alternating?

After the issue of focus, there is still the problem of field-of view but it is really fairly easy to stitch together a matrix of images in the same plane, at least in simple cases. Photoshop has an option to do this and there are other similar packages; this is also another job that ‘layers’ in Photoshop cope with very well: adjacent overlapping images can be blended manually. It is more difficult of course if these adjacent images are themselves blends at different focus points……it just takes a long time to get right. The image of Tolypella glomerata that was a runner-up in the 2015 Hilda Canter-Lund competition was made of 75 sub-images (17×5 approx) and took two days to process! Each of the 17 in the xy plane was shot as a stereo pair, so there is also a matching anaglyph (3D image) made of 150 sub-images!


“Out of the pit”: Chris Carter’s image of Tolypella glomerata, shortlisted for the 2013 Hilda Canter-Lund prize.


This dark-field image showing the antheridia of Chara fragifera is made up of 28 sub-images: 4 horizontally and 7 for the vertical stacking; a protruding green filament has been removed (actually a rare Bulbochaete, but that is another story).

One final point, unresolved in my view and perhaps the most difficult of all is the issue of dynamic range. In transmitted light photography the intensity of difference between bright and dark can be nearly impossible to capture: well beyond the capability of the 8 bits of a normal camera and marginal even for an expensive cooled CCD instrument. Photoshop and other packages claim HDR ability (High Dynamic Range) using several images of different exposure: I have not personally had much success with this but have regularly used Photoshop layers to blend such images manually and regard this as acceptable in all cases (see the Rivularia cross-section below).

All the algae are amazing but even a retired physical scientist has to narrow things down a bit: I am trying to use photography to bring out the three dimensional aspects for identification and appreciation: diatom auxospores, desmids from unusual angles and macroalgae as 3D recreations such as anaglyphs and stereograms….but that is another story.


The cyanobacterium Rivularia presents many photographic challenges. This is a section of a nodule in transmitted light done for taxonomic purposes: in-focus bits of the calcification have been discretely blended in and the outermost part showing hairs is at a very different exposure to the core; colours are distorted by passing through the nodule and have been corrected. Three or four overlapping sections have been accurately joined to produce the final image.

Chris Carter, Nothampton August 2016.

How to win the Hilda Canter-Lund competition (2)

My previous post on this subject (see “How to win the Hilda Canter-Lund competition”) considered the dichotomy between the “decisive moment” – the spontaneous recognition of the potential of a view to become a great image – and the painstaking preparation – and post-production work – that is often necessary to produce a really stunning image of the microscopic world.   In this post, I am going to take a step backwards, then approach the topic of photographing algae from a different angle.

Let’s take as a starting point a desire to simply provide a good representation of an alga in order to convey some essential information that allows someone else to recognise or name that organism.   You might try to simplify the background to throw the subject into sharper definition, and you will aim to get as much of the organism in sharp focus.   You will also try to offer the viewer an indication of scale, particularly important when dealing with the microscopic world.  A good example of such an image which made the shortlist in 2010 is Chris Rieken’s image of the desmid Micrasterias radiata.   You would be very pleased to open a guide to desmids and find an image as clear as this to help you identify your own specimens.


Left: Chris Rieken: Micrasterias radiata Prox (2010 shortlisted image); right: Petr Znafor: Freshwater phytoplankton dominated by desmids (2016, co-winner).

Compare Chris’ image with Petr Znachor’s image which won a prize in 2016.   Both are of desmids, but they are very different.  Chris has focussed on representation of the organism and has produced a beautifully crisp image whilst Petr has used the fact that some of the desmids in his image are not in sharp focus to create an aesthetically-pleasing pattern.   It is still, recognisably, of desmids, and you may be able to name the genera, yet it is harder to say exactly what species are present.   The two images, in other words, illustrate a tension between representation and abstraction that runs through many of the winning and short-listed entries of the microscopic world (Lira Gaysina’s image of Trichormus variabilis, shown in my earlier post, also demonstrates this tension.


Günter Forsterra: Octopus’ Garden (2015 winner)

Günter Forsterra’s winning image from 2015 illustrates another direction that images of algae can take.  He photographed marine macroalgae – several orders of magnitude larger than the microalgae discussed in the previous paragraph –but, like Petr Znachor and Lira Gaysina, he was not aiming to create a technically-perfect image that would allow a viewer to name the organisms present.  Instead, he takes us into another world, one that is hidden to all but a small number of initiates.   The temptation is to refer to the underwater landscape portrayed by Günter as “surreal”, but this term has a precise meaning in cultural studies (relating to the interface between dreams and reality) should not really be applied haphazardly.  I prefer to the term “other worlds”, recognising that his image conveys an impression of a different, altogether stranger, world than most of us have ever experienced.


Conceptual diagram of the tensions inherent in algal photography.  Scientific illustrations, designed primarily to inform, sit at the top of the pyramid; moving away from straight representation towards either of the other corners creates images with greater aesthetic value but, perhaps, at the cost of information.

There are, in other words, at least two tensions that can work on an image of an alga to create an aesthetically-pleasing image; I’ve summarised these in the diagram above.   Chris Rieken’s image would lie close to the apex of the triangle, with “representation” predominant; Petr Znachor’s image would lie closer to the “abstraction” corner, whilst Günter Forsterra’s is in the opposite corner, “other worlds”.   All of the images that are submitted can fit onto this triangle somewhere; the question is how these tensions are balanced to raise a straightforward representation of an alga into an image that combines informative, technical and aesthetic properties and creates a work of art.

Neither “abstraction” nor “other worlds” are unambiguous concepts; both require an interaction with the viewer.   To someone familiar with freshwater algae, Petr Znachor’s image is clearly of desmids, and many will be able to identify the two genera that are present (Cosmarium and Staurastrum).   However, someone who knows little of algae will just see a collection of colours and shapes.  The boundary between representation and abstraction, in other words, is fluid; the viewer is never neutral and, for this reason, the legend becomes very important, providing a bridge between the image and the viewer.  In a similar way, Günter Forsterra’s image could appear, to the uninformed, to be something from a science fiction movie.  Again, the legend acts to locate the image firmly on Planet Earth and, hopefully, to raise awareness of the importance of algae to healthy marine ecosystems.


Eileen Bresnan: Chaetoceros chaos (2010 shortlist).  An example of a very abstract depiction of an alga.

Depiction of “other worlds” is harder for those of us who study the microscopic world, due to the problems associated with shallow depths of field (see “How to win the Hilda Canter-Lund competition”); microscopic images, as a result, tend towards “abstraction”.  However, it is not just the shallow depth of field that is an issue here: we also have to consider the disruption caused to a microscopic ecosystem caused by the sampling process, and then as it is teased apart, squashed onto a microscope slide and viewed at unnaturally high light intensities.   That is why I prefer to use paints to recreate the microscopic world in situ.  The results are, I know, partially the result of my imagination but, then again, everything that we view down a microscope is, to some extent, manipulated and artificial.

This post, and the previous one, have focussed less on how to take a great photograph than on what makes a great image.   I hope that it inspires you to go out and have a go.   We’ll come back to some of the technical issues in microphotography in a future post.

More about the Hilda Canter-Lund competition can be found here

Hilda Canter-Lund competition 2016 second prize winner


A short while ago I wrote about Tiffany Stephens winning entry for the 2016 Hilda Canter-Lund prize.   Following that, the Council of the British Phycological Society agreed that a second prize, of equal value, would also be awarded, starting this year, which means that I am very pleased to announce that Petr Znachor’s image of summer phytoplankton from the Řìmov Rservoir in the Czech Republic will also be honoured by the society.

The rationale for the decision is that Hilda Canter-Lund was primarily a photographer of the microscopic world, yet five of the seven winners of the competition to date have either been of images of macroalgae or (in the case of the 2009 winner) a seascape in which an algal bloom is prominent.  I suspect that there are a number of reasons for this, but the greater technical challenges facing anyone who wishes to photograph the microscopic world plays a key role.  The first prize is awarded based on a vote by members of the BPS Council; the second prize, by contrast, will be awarded at the judge’s discretion, but for an image in a contrasting style.   This year, as Tiffany Stephens won with an image of the macroalga Durvillaea antarctica, the award goes to Petr Znachor but there is no reason why, in future years, a microalgal image may get the most votes, in which case a macroalgal image will get the other prize.

Petr’s image shows summer phytoplankton in the eutrophic Řìmov Rservoir dominated by the desmids Cosmarium and Staurastrum. It was taken during examination of a sample that was collected as part of a long-term monitoring program and concentrated with 20 µm plankton net.  He used an Olympus BX51 microscope with Nomarski contrast lighting and an Olympus DP70 camera.


Petr Znachor received his Ph.D. from the University of South Bohemia (Czech Republic) in 2003. He is currently a research associate at the Institute of Hydrobiology where his research focuses on phytoplankton ecology and, in particular, the ecology of reservoirs and analyses of long-term time series of data. Ever since he first looked through a microscope he was astonished by the myriad beautiful shapes and colours of phytoplankton existing in a single drop of water. He hopes that his pictures raise awareness of the importance of these tiny organisms.

As do we.

Hilda Canter-Lund competition 2016 winner


The winner of the 2016 Hilda Canter-Lund photography award is Tiffany Stephens, for her photograph “Swell Life”, showing algae in the intertidal zone of Snares Island, a small sub-Antarctic island, 200 kilometres south of New Zealand.  Tiffany took this photograph whilst studying for her PhD at the University of Otago with Chris Hepburn.

The picture’s genesis is in the spirit of Henri Cartier-Bresson’s “decisive moment”: Tiffany was on R.V. Polaris II, trying to collect data on the amount of particulate organic matter that was being released into the water by macroalgae, and the role that this played in food webs.    One day, when the sea was especially calm and the swell small, the skipper was able to bring the boat closer to the steep rock wall smothered with algae so that she could lower a probe into the water to collect a sample.   It was during this manoeuvre that Tiffany was able to snap the picture.   Closely cropped, the algae of the intertidal zone and the surging water create a semi-abstract composition that also tells a story of the functioning of near-shore communities in an inhospitable environment.

The dominant alga in the photograph is Durvillaea antarctica, “southern bull kelp”, a brown alga that is only found on exposed shores of the cooler regions of the southern hemisphere.   Above the Durvillaea there is a resilient band of mixed red and encrusting coralline algae.


Tiffany Stephens, 2016 Hilda Canter-Lund award winner.

Unlike the fucoids, common on north temperate coasts, Durvillaea antarctica does not have air bladders in its fronds.  Instead, the interior tissues of the leathery blades have an unusual honeycomb structure which confer strength and buoyancy.   This also means that if the holdfast fails, the kelp is able to float, and to be transported around by oceanic currents.  This may help to explain why Durvillaea is so widespread in the southern hemisphere.  However, it is not just the kelp that benefits: these “rafts” of Durvillaea have been suggested as one means by which the sub-antarctic islands were recolonised by invertebrates following the last ice age.

Durvillaea is also eaten by coastal communities in some parts of the southern hemisphere and, bizarrely, used by Maori communities in New Zealand to preserve “mutton bird”, the sooty shearwater (Ardenna griseus).  If the honeycomb structure of Durvillaea is to function as a buoyancy aid for the living plant, the exterior tissues of the blades needs to be air-tight.  The Maori exploit this property, removing the inner honeycomb tissues to create air-tight bags.  They then preserve the young shearwater inside these bags, covered by their own fat (a sort of shearwater confit, I guess?).

One final fact about Durvillaea is that it forms part of a rather rude expression for sexual intercourse in Chile (remojar el cochayuyo – literally “soaking the seaweed”).  Don’t ever say that reading my blog doesn’t broaden your horizons …


Left: an underwater view of a “forest” of Durvillaea antarctica; right: the “honeycomb” tissues inside a frond of D. antarctica.  Photographs: Chris Hepburn, University of Otago.


Fraser, C.I., Nikula, R. & Waters, J.M. (2011).  Oceanic rafting by a coastal community.  Proceedings of the Royal Society Series B 278: 649-655.

Stephens T.A. & Hepburn C.H. (2014). Mass-transfer gradients across kelp beds influence Macrocystis pyrifera growth over small spatial scales. Marine Ecology Progress Series 515: 97–109.

Hilda Canter-Lund competition shortlist 2016

Organising the annual Hilda Canter-Lund competition to find the best photograph of algae is one of the pleasures of my year and the shortlist for the 2016 prize is now online.   Choosing a shortlist this year was more difficult than usual, but we finally arrived at a set of images that spans marine and freshwater habitats and feature organisms which range in size from microscopic single cells to giant kelps.


Jamie Canepa’s image Adaptation in Action (left above) continues a trend in the competition of showing symbiotic relationships between algae and other organisms, in this case sea anenomes, photographed near Cape Sebastian in Oregon.   John Huisman (right above), a former winner, shows a different type of relationship, with a filament of the Xanthophyte genus Vaucheria that has been parasitized by a rotifer (“Unwelcome guests: Vaucheria gall”).


The organism exploiting algae in Dani Machlis’ image(left above) is humans (“algae tubes”).  He shows algae being grown for the biotechnology industry (in this case, a flavour and fragrance company based in Israel).  Leah Reidenbach’s image (“A white Christmas in the Sea”) returns us to the natural world, showing sunlit blades of the giant kelp Macrocystis pyrifira at Monterey Bay, California.  The white flecks in her image are “marine snow”, microscopic particles of organic material that become stuck together to form visible flecks of “snow” partly due to natural polymers produced by algae.  Leah’s image, therefore, spans some of the smallest and largest members of the algal world.


Tiffany Stephens takes us to the edge of Antarctica for a beguilingly simple yet elegant composition (“Swell Life”) showing the intertidal zone of Snares Island, 200 km south of New Zealand, dominated by the brown alga Durvillaea antarctica.  Finally, Petr Znachor’s image pulls us back from the macroscopic to the microscopic world, and from marine to freshwaters with his image “Freshwater phytoplankton dominated by desmids” showing algae found in a routine sample from a reservoir in the Czech Republic.  This near-abstract composition is very much in the style of Hilda Canter-Lund herself.

I get real pleasure from watching the entries for each year’s competition arrive in my in-box, because the competition sits at the junction between art and science and I can be both entranced and educated by a single picture.   The diversity of the algae, along with their worldwide distribution, means that no-one has such a comprehensive grasp of the field that they cannot be surprised by a particularly intriguing image.  And the range of patterns within the algae allows photographers to push at the boundaries between “representation” and “abstraction” and submit entries that are far from run-of-the-mill natural history photography.   The final twist comes from seeing which of these images will gain the ultimate accolade.  The Council of the British Phycological Society vote to decide the winner and it is never easy to predict which of the shortlisted images will attract the most votes.   The result for this year’s competition should be in before too long; meanwhile, have another look through the shortlist, and choose your own favourite …