Loving the low flows …

It is a long time since we have had a heatwave in the UK that has lasted as long as the present one.  The last that compares was in 1995, when the A1 near my house was busy with tankers ferrying water from Kielder Water in Northumberland to the drought-afflicted areas of Yorkshire.   Three weeks in and gardeners are staring anxiously at the parched soil and quietly praying for rain whilst, at the same time, trying to make the most of the rare luxury of warm weather.   Rivers, too, are showing the effects of the weather.  In some parts of the country, rivers are drying out and fish stocks are threatened.   That is not the case here in the north-east, but the River Wear is showing some signs.

The medieval Prebends Bridge is one of the most picturesque sights in Durham but, at the moment, the water underneath the bridge – and, indeed, throughout Durham – is bright green with flocs of algae.   Closer inspection showed this to be fronds of Ulva flexuosa: the cells are arranged to form a hollow tube, like a sausage skin, which traps the oxygen released by photosynthesis to give the alga an integral buoyancy aid.  You can see how this clearly in the image below. The common name for this alga is “gutweed”, which offers us another metaphor for the appearance of these semi-inflated sacs of cells.   This broad thallus is loosely attached to the river bed (see lower picture below) but is easily dislodged, after which the thalli drift downstream until they become entangled in other water plants or submerged branches.  In the current state, Durham’s rowers are grumbling that it is becoming entangled with their oars

We often see a little Ulva flexuosa in the Wear during the summer, but rarely as much as this.  It is a species that thrives under still, warm conditions and which also benefits from the weirs which regulate the flow of the river in Durham.   It is an alga that we tend to associate with nutrient-rich conditions, but this might be because the type of slow-flowing lowland rivers where it can become common are more likely to be nutrient rich than faster-flowing upland rivers where it is rarely found.   The current weather, in other words, creates the “perfect storm” for Ulva flexuosa.   Ironically, a storm – perfect or otherwise – will probably alter the flow regime in the Wear enough to flush it all downstream.  Another curiosity is that, despite being favoured by low flows and the near-standing water behind the weirs in Durham, Ulva flexuosa seems to be more likely to form mass growths in rivers rather than in lakes or ponds.

Ulva flexuosa in the River Wear, July 2018: the upper picture shows free-floating thalli, inflated by oxygen released by photosynthesis; the lower photograph shows thalli still attached to the river bed.

In my experience, the genus Ulva tends to be absent from nutrient-poor conditions which is subtly different to saying that it thrives when nutrients are abundant.  There are other factors – warm, stable conditions in particular that determine the success of the genus in any particular place.  The Wear has seen a significant decrease in nutrients in recent years yet here we are, in 2018, with a river full of Ulva.   I could say that, despite this reduction in nutrients, the Wear is still, relatively speaking, nutrient-rich, but the coincidence with an altered flow regime, a prolonged spell of warm weather and low flow conditions seems too great to ignore.   Ulva flexuosa is, in other words, a fine example of an alga where we need to think of a multifactorial “habitat template” rather than just in terms of single stressors.   We also need to think in terms of probabilities of mass proliferations increasing or decreasing as habitat factors vary, rather than a simple likelihood of finding Ulva at any particular location.

That means we need to look at climate change forecasts and, if there is a likelihood of more long, warm, dry summers, then we should expect more frequent blooms of Ulva in our rivers.  We may tinker with nutrient concentrations and even try to restore more natural flows (though Durham’s rowers will have a view if that was tried here!) but, ultimately, Ulva flexuosa is a species that enjoys a heatwave as much as any other resident of these islands.

A high magnification (x 400) view of the thallus of Ulva flexuosa from the River Wear.   Scale bar: 20 micrometres (= 1/50th of a millimetre).

Reference

Rybak, A.S. & Gąbka, M. (2017).  The influence of abiotic factors on the bloom-forming alga Ulva flexuosa (Ulvaceae, Chlorophyta): possibilities for the control of the green tides in freshwater ecosystems.  Journal of Applied Phycology https://doi.org/10.1007/s10811-017-1301-5

Advertisements

A question of scale …

It has taken some time to convert the observations from my last visit to the River Wear (see “Spring comes slowly up this way …”) into a picture.  Then, if you remember, the river was balanced between its “spring” and “summer” guises, the cool, wet weather that we experienced in March seems to have held the plants and animals that I usually see at this time of year back.   The result was a patchiness that was easy to see with the naked eye, but harder to visualise at the microscopic level.

First there were quite a few diatoms, Achnanthidium minutissimum in particular, – that suggested a thin biofilm subject to grazing by invertebrates (and I could see some chironomid larvae moving amongst the biofilm as I was sampling).   However, there were also diatoms such as Ulnaria ulna and Gomphonema olivaceum that suggested a thicker biofilm.    And finally there were filaments of the green alga Stigeoclonium tenue, mostly in discrete patches.   I never see healthy filaments of Stigeoclonium tenue smothered in epiphytes, which I have always assumed to be due to the copious mucilage that surrounds the plants.  However, I wondered if, nonetheless, Stigeoclonium contributes to overall habitat patchiness for the diatoms, as they subtly alter the way that water flows across the stone, reducing drag and shear stress in a way that favours Gomphonema and Ulnaria.   This is just speculation, of course…

That brings me back to a familiar theme: the problems of understanding the structure of the microscopic world (see “The River Wear in January” and “Baffled by the benthos (1)”) and, tangentially, to a paper on organisms’ responses to climate that was quoted at a scientific meeting I attended recently.   In this, Kristen Potter and colleagues demonstrated that there was typically a 1000 to 10,000 fold difference between the scale at which the distribution of organisms is studied and the size of those organisms.   That might be enough to draw out some coarse-scale patterns in distribution of species, but organisms actually live in microclimates, which may be patchy and which can often be quite different to the prevailing macroclimate (the difference between being exposed to full sun in open grassland and in the shade of a forest being a good example).   They suggested that the ideal spatial resolution is between one and ten times the organism’s length/height.

I see no reason why the same challenge should not also apply to the pressures faced by organisms in rivers where, again, we can get a certain amount of useful information from a coarse analysis of distribution in relation to (let’s say) average nutrient concentrations in a reach, but cannot really understand the reasons behind the spatial and temporal variation that we see in our data.  This mismatch between the scale at which organisms respond and the scale at which we study them is, I suspect, an even bigger problem for those of us who study the microscopic world.

A second illustration came at the same meeting in a talk by Honor Prentice from the University of Lund in Sweden.  She was dabbling in molecular biology years before this became a fashionable pastime for ecologists and has, over her career, developed some fascinating insights into how the structure of both plant communities and populations of individuals vary over short distances.  Her work has focussed on the island of Öland in Sweden which has the largest extent of alvar (limestone pavement) in Europe.   The system of grikes (the slabs) and clints (the fissures which separate the grikes) create quite different microclimates – the cool, moist conditions in the latter can create bog-like conditions with much lower pH than the limestone clints.   These differences influence not just the composition of the community but the genetic structure of species within these communities too.  I left thinking that if she could detect such differences at a scale barely more than one order of magnitude greater than the organisms, then how much more variation am I missing, with perhaps a five order of magnitude difference between organism size and sampling scale?

Based on these two studies, we would need to sample biofilms at a scale of about 1 mm2 in order to get a meaningful understanding of habitat patchiness in stream benthic algae.  That might just be possible with Next Generation Sequencing technologies, though I am not sure how one would go about collecting environmental data at that scale needed to explain what is going on.  Meanwhile, I am left with the coarse approach to sampling that is inevitable when you are five orders of magnitude bigger than the organism that you want to collect, and my imagination.

References

Potter, K.A., Woods, H.A. & Pincebourde, S. (2013).  Microclimatic changes in global change biology.   Global Change Biology 19: 2932-2939.

Prentice, H.C., Lonn, M., Lefkovitch, L.P. & Runyeon, H. (1995).   Associations between allele frequencies in Festuca ovina and habitat variation in the alvar grasslands on the Baltic island of OlandJournal of Ecology 83: 391-402.

 

A brief history of time-wasting …*

Having talked about diversity on a microscale in the previous post, I thought it would be interesting to place this in context by looking at the variations that I have observed in the River Wear at Wolsingham over the past decade or so.   The River Wear has seen some significant improvements in water quality over this period, but those have mainly affected sections of the river downstream from Wolsingham.  Most of the changes at Wolsingham are, therefore, giving us some insights into the range of natural variation that we should expect to see in a river.

I’ve got 31 samples from the River Wear at Wolsingham on my database, collected since 2005.  Over this period, nine different diatom species have dominated my counts: Achnanthidium minutissimum on 21 occasions, Nitzschia dissipata twice and Cocconeis euglypta, Encyonema silesiacum, Gomphonema calcifugum, Navicula lanceolata, Nitzshia archibaldii, N. paleacea and Reimeria sinuata once each.   I also have records for non-diatoms during 2009, during which time the green alga Ulothrix zonata, and two Cyanobacteria, Phormidium retzii and Homeothrix varians were the dominant alga on one occasion each.   In total, I have recorded 131 species of diatom from this one reach, although only I’ve only found 91 of them more than once, and only 59 have ever formed more than one percent of the total.   I’ve also got records of 22 species other than diatoms.

This – along with my comments in “The mystery of the alga that wasn’t there …” raises questions about just how effective a single sample is at capturing the diversity of algae present at a site.  .    In 2009 I collected a sample every month from Wolsingham and the graph below shows how the total number of species recorded increased over that period.   Typically, I find between 20 and 30 species in a single sample, and each subsequent month revealed a few that I had not seen in earlier samples.   Importantly, no single sample contained more than 40 per cent of the total diversity I observed over the course of the year.  Part of this high diversity is because of the greater effort invested but there is also a seasonal element, as I’ve already discussed.   The latter, in particular, means that we need to be very careful about making comments about alpha diversity of microalgae if we only have a single sample from a site.

Increase in the number of diatom taxa recorded in successive samples from the River Wear at Wolsingham.  In 2009 samples were collected monthly between January and December whilst in 2014 samples were collected quarterly. 

This seasonal pattern in the algal community also translates into variation in the Trophic Diatom Index, the measure we use to evaluate the condition of streams and rivers.  The trend is weak, for reasons that I have discussed in earlier posts, but it is there, nonetheless.   Not every river has such a seasonal trend and, in some cases, the community dynamics results in the opposite pattern: higher values in the summer and lower values in the winter.  It is, however, something that we have to keep in mind when evaluating ecological status.

Variation in the Trophic Diatom Index in the River Wear at Wolsingham between 2005 and 2015, with samples organised by month, from January (1) to December (12).   The blue line shows a LOESS regression and the grey band is the 95% confidence limits around this line.

All of these factors translate into uncertainty when evaluating ecological status.   In the case of the River Wear at Wolsingham, this is not particularly serious as most of the samples indicate “high status” and all are to the right of the key regulatory boundary of “good status”.  However, imagine if the histogram of EQRs was slid a little to the left, so that it straddled the good and moderate boundaries, and then put yourself in the position of the people who have to decide whether or not to make a water company invest a million pounds to improve the wastewater coming from one of their sewage treatment plants.

At this point, having a long-term perspective and knowing about the ecology of individual species may allow you to explain why an apparent dip into moderate status may not be a cause for concern.  Having a general sense of the ecology of the river – particularly those aspects not measured during formal status assessments – should help too.  It is quite common for the range of diatom results from a site to encompass an entire status class or more so the interpretative skills of the biologists play an important role in decision-making.   Unfortunately, if anything the trend is in the opposite direction: fewer samples being collected per site due to financial pressures, more automation in sample and data analysis leading to ecologists spending more time peering at spreadsheets than peering at stream beds.

I’ve never been in the invidious position of having to make hard decisions about how scarce public sector resources are used.  However, it does strike me that the time that ecologists used to spend in the field and laboratory, though deemed “inefficient” by middle managers trying to find cost savings, was the time that they learned to understand the rivers for which they were responsible.  The great irony is that, in a time when politicians trumpet the virtues of evidence-led policy, there is often barely enough ecological data being collected, and not enough time spent developing interpretative skills, for sensible decisions to be made.   Gathering ecological information takes time.   But if that leads to better decisions, then that is not time wasted …

Ecological Quality Ratio (EQR: observed TDI / expected TDI) of phytobenthos (diatoms) at the River Wear, Wolsingham) between 2005 and 2015.   Blue, green, orange and red lines show the positions of high, good, moderate and poor status class boundaries respectively.

* the title is borrowed from the late Janet Smith’s BBC Radio 4 comedy series

Our patchwork heritage* …

The problem with the case I set out for a “switch” from a winter / early spring biofilm community to a summer / autumn assemblage is the sample that I was writing about contained elements of both.   This, I think, is another aspect of an issue that I touched upon in “The River Wear in January”: that the scale that we work at is much greater than the scales at which the forces which shape biofilms operate.   There is no intrinsic driver for this switch beyond the physical forces in the river but each stone will have a slightly different history.  A smaller cobble will be more likely to be rolled than a boulder, as will one that is not sheltered from the main current, or not well bedded into the substratum.  The sample I collect is a composite from the upper surface of five separate cobbles so will blend these different histories.   The more stable stone might have more Navicula lanceolata and Gomphonema olivaceum whilst the recently rolled might be dominated by early colonisers such as Achnanthidium minutissimum.

The same processes can even work on a single stone.   Arlette Cazaubon, a French diatomist, now retired, wrote several papers on this topic (see references at the end of this post).  She highlighted how the diatom assemblages differed across the surface of a boulder, depending on the exposure to the current.  However, that is only part of the story.  The picture at the top of the post was taken in January, when I was collecting my first samples of the year.  You can see the streak where I ran my finger through the biofilm and some other marks, perhaps where the heel of my wader had scuffed the stone (I’m trying to keep my balance in the middle of a northern English river in January whilst holding a waterproof camera underwater, remember).   But such damage could have arisen just as easily from twigs or stones that were being washed downstream.   Taken together with Arlette’s work, it shows how a mature Navicula lanceolata / Gomphonema olivaceum assemblage can live alongside a pioneer Achnanthidium minutissimum assemblage.

A schematic view of the biofilm in the River Wear at Wolsingham, March 2018.   a. Navicula lanceolata; b. Gomphonema olivaceum complex; c. Fragilaria gracilis; d. Achnanthidium minutissimum.   Scale bar: 10 micrometres (= 1/100th of a millimetre).

I’ve tried to depict that in the schematic diagram above.   On the left-hand side there is a mature biofilm, with long-stalked Gomphonema species creating a matrix within which motile diatoms such as Navicula lanceolata live whilst, on the right, there is a pioneer community dominated by Achnanthidium minutissimum.   However, whilst this patchiness is a natural phenomenon, it can contribute to the variability we see in ecological data and, indirectly, to an impression that ecological data are not precise.   If I were to divide the diagram above into two halves, the left-hand side would return a higher TDI than the right.  This is because the diatoms on that side have broader ecological tolerances than those on the other (the sample size, by the way, is far too small to do this seriously but I just want to make a point).   In practice, however, the entire diagram represents little more than the width of a single bristle of the toothbrush that I use to collect samples so a sample is, inevitably, an amalgam of many different microhabitats on a stone.  Our assessment of the condition of the river represents the average of all the patches across the five stones that form a typical sample on that day.

The importance of patchiness in determining the structure and composition of stream communities has been known for some time (see review by Alan Hildrew and Paul Giller in the reference list).   What we have to remember when trying to understand phytobenthos is that patchiness is, to some extent, embedded in the samples we collect, rather than being something that our present sampling strategies might reveal.

* “… for we know our patchwork heritage is a strength not a weakness ..” Barack Obama: inaugural address, 2009

Reference

A useful review on patchiness in stream ecosytems (several other papers in this volume also discuss patchiness in freshwater and marine environments):

Hildrew, A.G. & Giller, P.S. (1994).  Patchiness, species interactions and disturbance in the stream benthos.  pp. 21-62.  In: Aquatic Ecology: Scale, Pattern and Process (edited by P.S. Giller, A.G. Hildrew & D.G. Rafaelli).   Blackwell Scientific Publications, Oxford.

Some of Arlette Cazaubon’s papers on variability in diatom assemblages across the surfaces of single stones:

Rolland, T., Fayolle, S., Cazaubon, A. & Pagnetti, S. (1997). Methodological approach to distribution of epilithic and drifting algae communities in a French subalpine river: inferences on water quality assessment. Aquatic Science 59: 57-73.

Cazaubon, A. & Loudiki, M. (1986). Microrépartition des algues épilithiques sur les cailloux d’un torrent Corse, le Rizzanese. Annals de Limnologie 22: 3-16.

Cazaubon, A. (1986). Role du courant sur la microdistribution des diatomées epilithiques dans une Riviere Méditerranéenne, L’Argens (Var, Provence). pp. 93-107.   Proceedings of the 9th Diatom Symposium.   Bristol.

Cazaubon, A. (1988). The significance of a sample in a natural lotic ecosystem: microdistribution of diatoms in the karstic Argens Spring, south-east France.  pp. 513-519.   In: Proceedings of the 10th Diatom Symposium, Joensuu, Finland.

Burnhope Burn’s beautiful biofilms …

I have continued the series of studies that I started in “In search of the source of the Wear” with a three-dimensional diorama of the biofilm that I found at the mouth of Burnhope Burn, and can now compare it with the corresponding study from Wolsingham (see “The curious life of biofilms”).   The two big differences are the greater number of green filaments at Burnhope and the large numbers of cells of Navicula lanceolata at Wolsingham.   I suspect the two are linked: the Wolsingham biofilm was a mix of diatoms and organic particulate matter along with associated bacteria whilst the Burnhope biofilm was green algae and organic matter with diatoms in a subordinate role.  I speculated, in my earlier post, that Burnhope Burn’s location below a reservoir may have altered the hydrology of the stream such that green algae were favoured.   I wonder, too, if the presence of green algae then subtly shifts the composition of the biofilm matrix such that dense aggregations of Navicula lanceolata are not able to develop in the way that they could at Wolsingham.

There is something about the ecology of a few Navicula species that leads to the development of these aggregations (see “The ecology of cold days” for more about freshwaters, whilst “An excuse for a crab sandwich, really” and “A typical Geordie alga …” describes similar phenomena in brackish habitats).   Conversely, Nitzschia dissipata, which was the most abundant diatom at Burnhope Burn, never seems to form these dense monocultures.   Nitzschia dissipata was also much less common in the biofilm from Killhope Burn, just a few metres away from where I collected the Burnhope sample and where filamentous green algae are scarce.  wonder if this, too, is more than a coincidence and that N. dissipata is actually adapted to living within matrices formed by filamentous algae rather than on top of matrices dominated by diatoms and organic particulates?

I have seen a few other motile diatoms – Denticula tenuis is one – that seem to be more abundant in the presence of filamentous algae.   There may also be species that thrive when the matrix is composed largely of inorganic particles, as well as other species (Navicula angusta and N. notha are two that spring to mind) that may be naturally “understory” species that are never especially abundant in biofilms.   All this is pure speculation, but it is worth remembering that most of the insights into diatom ecology come from studies on cleaned valves which removes all traces of non-diatom algae, and also that the prevailing dogma of diatom sensitivity to their chemical environment is such that non-chemical factors are largely overlooked in academic studies.   No evidence, in this case, may just mean that no-one has asked the right questions.

In search of the source of the Wear …

Having investigated the microscopic world at Wolsingham (see “The River Wear in January” and “The curious life of biofilms), I decided that it would be interesting to head further upstream and see how much difference there was between the algae at the two locations.  I drove up to Wearhead on a cold Saturday morning to take a look but was immediately faced with a conundrum: the River Wear is formed from the confluence of two very different streams, both with extensive catchments on the moors of the northern Pennines.   One of these is Burnhope Burn, which is fed by Burnhope Reservoir, about a kilometre above Wearhead, and the other is Killhope Burn, which drains a large area of blanket bog, forestry and, importantly, abandoned metal mines.   Burnhope Burn is on the left of the photograph above whilst Killhope Burn comes in from the right.  I thought it might be rather interesting to take a sample from each and see how they compared.

The two streams look quite different to one another.   Burnhope Burn, its flow regulated by the reservoir, is the Cain of the pair whilst Killhope Burn is the unruly turbulent Abel.   This was apparent, too, when I was collecting the samples and, again, when I peered at them through my microscope.   Burnhope Burn’s biofilm was thicker and the most conspicuous algae that I could see were green filaments of Klebsormidium.  Killhope Burn’s was thinner and dominated by diatoms.   Many of the same diatoms were found in the two samples, but Burnhope Burn had more of the motile Nitzschia species that benefit from the tangled matrix of green algal filaments that thrived there.

Views of the biofilm from Burnhope Burn (a.) and Killhope Burn (b.) just above their confluence to form the River Wear, February 2018.

I’ve tried to capture the essence of the biofilm from Burnhope Burn in the schematic diagram below.  Compare this with the diagram of the biofilm from the Wear that I showed in my earlier post.   In both cases, we have a mix of organic and inorganic elements, with the organic matter further divided into living organisms and agglomerations of particulate matter.  A few of the species are common to both but there are also some notable differences.   The biofilm in the Wear, for example, had almost no green algae (though that may change over the coming months) whilst that from Burnhope Burn has many filaments of Klebsormidium.   There were motile diatoms at both locations but the species are different: Navicula lanceolata and N. gregaria at Wolsingham and Nitzschia dissipata at Burnhope Burn.  People usually describe differences in the ecology of diatoms in terms of their chemical environment but I sometimes wonder if, in the case of motile diatoms, the nature of the matrix within which they live also plays a role in determining which thrive.

The difference between Burnhope and Killhope Burns is a variation of the theme that I discussed in “Small details in the big picture …”.  Again, regulation of a river or stream plays a role in determining which species of algae can thrive.  However, whereas I found a lot of Platessa oblongella in the unregulated streams of the Ennerdale catchment, the more base-rich environment of the Pennines means that I am much less likely to find P. oblongella in these streams.  In fact, I don’t think I have ever seen it in north-east England (see distribution maps in “Why do you look for the living amongst the dead”).

That reminds me: I was going to write more about the ecology of Platessa oblongella before I was diverted by desmids and Wearhead.   Soon …

A schematic view of the vertical structure of a submerged biofilm from Burnhope Burn, Wearhead, February 2018.   a. Klebsormidium fluitans; b.  Phormidium; c. Nitzschia dissipata (valve view); d. N. dissipata (girdle view); e. Gomphonema cf. calcifugum (valve and girdle views); f. inorganic particles; g. fine particulate organic matter.  Scale bar: 20 micrometres (= 1/40th of a millimetre).

 

The curious life of biofilms …

My explorations of the microscopic world of the River Wear have now gone one step further with the transformation of the schematic representation that I presented in The River Wear in January into a three-dimensional diorama.   This shows the “biofilm” on the top of submerged stones, with a layer of Navicula lanceolata at the top (the chocolate brown layer in the photograph from the earlier post) intermingled with small Gomphonema cells on long stalks and some cyanobacterial filaments.   A large part of the biofilm, however, is inorganic particles and aggregations of organic matter.

I’m curious about why this biofilm is thickest in the winter, not just in the River Wear but in many other rivers too.   Part of the reason is that the organisms that form this film can outpace the bugs that want to eat them at this time of year but this is not the whole story.    As the image shows, the biofilm is about far more than just algae, so we need to know a little more about all that organic matter that takes up so much of the space in the picture.   Where does it come from and why does it accumulate on stone surfaces?

The story starts with the polysaccharides that algae and other microorganisms (fungi and bacteria) secrete as they grow.   These polysaccharides play several roles – they provide the stalks for diatoms such as Gomphonema, they help motile diatoms such as Navicula move and they also ensure that any enzymes that the organisms secrete stay in the proximity of the cell while they perform their functions.  However, as well as servicing the organisms that produce them, they also alter the chemical and physical environment on the stone surface.   Organic and inorganic particles, for example, can be trapped amongst the stalks of diatoms such as Gomphonema, but there are also chemical interactions.  River water contains dissolved organic matter, the end-result of the breakdown of organic matter such as leaves further upstream.   This can flocculate to form small particles which can be physically trapped, or it may be adsorbed onto the various polysaccharides in the biofilm.

If you think of a snowball rolling down a hill and growing in size as more and more snow gets stuck on the outside, you have a very rough idea of how a biofilm grows.   Simply being a biofilm is enough to help it become a bigger biofilm, as the wide range of biological, chemical and physical interactions that take place will increase the quantity of living and dead organic material, along with inorganic particles.  The supply of organic material varies through the year, and is greatest in autumn, following leaf fall (see “A very dilute compost heap …”).  The biofilm, unlike the snowball, is largely static; it is the water around it which is moving, bearing with it the raw materials to help it grow.  However, the biofilm also bears the seeds of its own destruction: all that organic matter – whether produced by algae in situ or imported from upstream – makes it a nutritious food source for the small invertebrates that inhabit the stream bed.  I often see midge larvae eating their way through both living and dead matter when I am examining samples under my microscope.   They are there throughout the year, but are busier in the warmer months when, as a consequence, the biofilms are thinner.

Curiously, despite having collected this sample from a stretch of the Wear where I could feel the strength of the current pushing against my legs, flow has relatively little effect on biofilms.   There is a thin layer just above the bed of the river where there is almost no current, due to frictional drag and the biofilms exist in this zone.   Only when the discharge becomes so strong that the stones themselves are overturned do we see major losses to the biofilm itself.   I have seen a medium-sized summer spate in the Wear lead to the opposite effect: a rapid increase in biofilm thickness, presumably because the invertebrates were more vulnerable than the smaller algae.

I will return to the same location on the River Wear in March to see how things have changed.

References

Blenkinsopp, S.A., & Lock, M.A. (1994).  The impact of storm-flow on river biofilm architecture.   Journal of Phycology 30: 807-818.

Liu, W., Xu, X., McGoff, N.M., Eaton J.M., Leahy, P., Foley, N. & Kiely, G.  (2014).  Spatial and seasonal variation of dissolved organic carbon (DOC) concentrations in Irish streams: importance of soil and topography characteristics.  Environmental Management 53: 959-967.

Lock, M.A., Wallace, R.R., Costerton, J.W., Ventullo, R.M. & Charlton, S.E. (1984).  River epilithon: toward a structural-functional model.  Oikos 42: 10-22.

Stevenson, R.J. (1990).  Benthic algal community dynamics in a stream during and after a spate. Journal of the North American Benthological Society 9: 277-288.