How Craticula got its name

Here is a puzzle for anyone who is learning to identify diatoms: how many species are shown in the plate below?   All share the same size and outline but they are very different in other respects, including several that we would normally regard as important for separating different species.   The left-hand image is an isolated girdle band, so let’s leave that to one side for the moment.  What about the two middle valves?   Both have a raphe in two parts, that runs along the midline, but the arrangement of their striae is very different.   And how do these relate to the pair on the right, which seem to have stout silica bars which traverse the cell?

The answer is that all belong to the same species: Craticula cuspidata.   Image b. is the way that it is most often seen (although it is not a particularly common species in the UK).   You should be able to see the raphe and fine striae which are more-or-less parallel to one another and perpendicular to the midline of the valve.   If you look with a scanning electron microscope, you’ll see that each of the striae is composed of a series of round or elliptical pores, equidistantly spaced so that the striae may appear to be running longitudinally as well as across the valve.

Craticula-cuspidata-all-bits-Pitsford-Jan2019

Craticula cuspidatafrom Pitsford Water, January 2019.   a. isolated girdle band; b.  “normal” valve; c. valve at “heribaudii stage”; d., e.: valves at “craticulae” stage. Scale bar: 10 micrometres (= 1/100thof a millimetre).  Photos: Chris Carter.

Although the genus Craticula was described in the 19thcentury by Grunow, it was considered to be part of the genus Naviculafor most of the 20thcentury.  We now regard the strictly parallel striae as one of the characteristics of Craticula but, if you think of it within in the broader realm of “Navicula” (basically, boat-shaped diatoms with a central raphe), many of which have radiate striae, then you might be happy to consider valve c. as being related to valve b.   In this case, it would have been called “Navicula cuspidata var. heribaudii”.   However, in 1979 Anne-Marie Schmid of the University of Salzburg, grew cultures of “normal” Craticula cuspidata in increasing salt concentrations and was able to show this (and the structures seen in images d. and e.) were responses to the stresses that this caused.

Under certain conditions, it seems, the normal process of cell division breaks down so that, rather than producing two daughter cells, each composed of two silica valves, just one “internal valve” is produced so that there are, in effect, three valves for two cells.  One of the cells then degenerates leaving a single functional cell albeit with one extra valve.   This phenomenon is not confined to Craticula but seems to be better understood for this genus than for others for reasons that I will come to shortly.   In this particular case, the internal valve has a similar outline to the parent, but a different arrangement of striae

Images d. and e. show another aspect of the same phenomenon: the formation of a “craticula” (from the Latin for “grid-iron”).  Schmid showed that this stage actually happens at lower salt concentrations than the “heribaudii” stage but that it, too, is related to the formation of these “internal valves”.   There is a thickening of silica along the central rib, after which transverse “buttresses” grow out and, finally, a silica band is laid down around the edges of the valve.  Schmid suggested that the resulting structures were resting stages, noting that she had found such structures in ponds in the Namib Desert that were only wetted for short periods every other year or so.  When they dried up, salinity increased very rapidly and these “resting spores” lay in the bottom muds protected by layers of “jelly” (i.e. extracellular polysaccharides).  About 11 days after she re-suspended them in distilled water, she observed viable cells gliding around again.

In the early 1990s, it became clear for other reasons that members of this genus were quite different from Naviculaso the original name was resurrected.  That leaves us with the unusual situation of a genus that is named after rarely-seen monstrosities.   It would be akin to naming Fragilaria “twisty diatoms” because, as we saw in “A twist in the tale …” a different form of stress causes a characteristic reaction in members of that genus.    Because Craticula is not a particularly common genus, and because “craticulae” valves are a relatively rare phenomenon within that genus, it is likely that most people have never seen the structure after which it was named.

References

Mann, D.G. & Stickle, A.J. (1991).  The genus Craticula. Diatom Research6: 79-107.

Schmid, A.-M. (1979).  Influence of environmental factors on the development of the valve in diatoms.  Protoplasma99: 99-115.

Life out of water …

Last time I wrote, I mentioned that those diatom genera that did not have to be permanently submerged in order to thrive (so-called “aerophilous diatoms”) often appeared together in samples.   Having seen some Luticola muticaearly in my analysis of the sample from Castle Eden Burn, it was no surprise to find Diadesmisand Simonsenialater in the same analysis.   If anything, the biggest surprise was that I did not also find Hantzschia amphioxys, another habitué of the damp fringes of diatom society.

A quick analysis of my database puts these thoughts into context.   There are 6500 samples in my database, so we can see, from the total number of records of each of the aerophilous genera that these are relatively scarce in the samples I encounter.  That is largely because my sampling approaches are biased against the habitats where these thrive (more about this below).   Aerophilous diatoms are more common than you might think; it is scientists with a yearning to learn more about them that is in short supply.

Hantzschiaand Simonseniaare both less frequent and less abundant than the other two genera, never occurring in numbers exceeding ten per cent of the total but, when they form more than one per cent of the total, there is a very high chance that you will also find other aerophilous taxa in the sample.   Humidophilaand Luticolaare sometimes found in higher numbers, and when this is the case, then the proportion of other aerophilous taxa is also often high: 75 per cent of samples where Humidophilais abundant, for example, have at least one other aerophilous taxon present at one per cent or more.

Frequency of other aerophilous genera in samples with Hantzschia, Humidophila, Luticolaand Simonsenia.    Each genus is represented by two rows: records where it formed 10 per cent or more of the total number of valves and records where it formed more than one per cent.   Similarly, records for other aerophilous genera are also stratified into those where they comprise more than 10 per cent of the total and those where they comprise more than one per cent.  

Genus number of records   other aerophilous genera
>10% >1%
Hantzschia 147 >10% n/a n/a
>1% 0.50 0.70
Humidophila 248 >10% 0.25 0.75
>1% 0.09 0.29
Luticola 630 >10% 0.09 0.35
>1% 0.05 0.16
Simonsenia 61 >10% n/a n/a
>1% 0.50 1.00

Over the years, I have come to use this information informally as a way of knowing whether the results of an analysis are likely to be giving me useful insights into ecological condition.   Many of the samples I analyse are collected by other people and sent to me.   These samplers should have been working to protocols that ensure that they check that the stones they choose were fully submerged for some time prior to their visit.  However, the person collecting the sample may have to make a judgement about river and lake level fluctuations in the period before their visit.  Finding lots of cells of aerophilous taxa in a sample is a good hint that something is awry.

The German method for ecological status assessment actually uses the proportion of aerophilous taxa as a check on the reliability of an assessment.    I suspect that they are not the only ones, but They have a list of 46 species that they regard as aerophilous taxa, and use a threshold of five per cent in a sample as a threshold.   The genera I’ve discussed all feature prominently, along with representatives of 19 other genera. Most of these are represented by only one or two species, although there are seven species of Nitzschia, five of Pinnulariaand six of Stauroneis.   I suspect that some species on this list are more tolerant of desiccation than others. We do not know enough of the physiological mechanisms behind this tolerance but it would seem that a few genera (Hantzschia, Humidophila, Luticiola) have definitely got this hard-wired into their genotypes, whilst other genera have members which are mostly aquatic in their habit but with a few exceptions able to survive out of water for some time.   I, personally, would trust the five per cent threshold if it was restricted to the hardcore aerophilous genera, with other taxa on the list providing supporting evidence. I would also add the proviso that there should be more than one aerophilous taxon contributing to that five per cent.  I would be happier, too, if there were a few experimental studies behind these lists and thresholds but, as ever with the world of diatoms, taxonomists are several steps ahead of the physiologists and so we are heavily dependent on anecdotal information when interpreting results.

List of taxa regarded as aerophilous in the German system for assessing ecological status in rivers. 

Name Authority
Achnanthes coarctata (Brébisson) Grunow in Cleve & Grunow 1880
Chamaepinnularia parsura (Hustedt) C.E.Wetzel & Ector in Wetzel et al. 2013
Cosmioneis incognita (Krasske) Lange-Bertalot in Werum & Lange-Bertalot 2004
Denticula creticola (Østrup) Lange-Bertalot & Krammer 1993
Diploneis minuta Petersen 1928
Eolimna subadnata  (Hustedt) G. Moser, Lange-Bertalot & Metzeltin 1998
Fallacia egregia (Hustedt) D.G. Mann 1990
Fallacia insociabilis (Krasske) D.G. Mann 1990
Fistulifera pelliculosa (Brébisson ex Kützing) Lange-Bertalot 1997
Halamphora montana (Krasske) Levkov 2009
Halamphora normanii (Rabenhorst) Levkov 2009
Hantzschia abundans Lange-Bertalot 1993
Hantzschia amphioxys (Ehrenberg) Grunow 1880
Hantzschia elongata (Hantzsch) Grunow 1877
Hantzschia graciosa Lange-Bertalot 1993
Hantzschia subrupestris Lange-Bertalot 1993
Hantzschia vivacior Lange-Bertalot 1993
Humidophila aerophila (Krasske) Lowe, Kociolek, Johansen, Van de Vijver, Lange-Bertalot & Kopalová, 2014
Humidophila brekkaensis (J.B.Petersen) D. Lowe, Kociolek, Johansen, Van de Vijver, Lange-Bertalot & Kopalová, 2014
Humidophila contenta (Grunow) Lowe, Kociolek, Johansen, Van de Vijver, Lange-Bertalot & Kopalová, 2014
Humidophila perpusilla (Grunow) Lowe, Kociolek, Johansen, Van de Vijver, Lange-Bertalot & Kopalová, 2014
Luticola cohnii (Hilse) D.G. Mann 1990
Luticola dismutica (Hustedt) D.G.Mann1990
Luticola mutica (Kützing) D.G. Mann 1990
Luticola nivalis (Ehrenberg) D.G. Mann 1990
Luticola nivaloides (W.Bock) J.Y.Li & Y.Z.Qi 2018
Luticola paramutica (W. Bock) D.G. Mann 1990
Luticola pseudonivalis (W.Bock) Levkov, Metzeltin & A.Pavlov 2013
Luticola saxophila (W.Bock ex Hustedt) D.G.Mann 1990
Mayamaea nolensoides (W. Bock) Lange-Bertalot 2001
Melosira dickiei (Thwaites) Kützing 1849
Muelleria gibbula (Cleve) Spaulding & Stoermer 1997
Neidium minutissimum Krasske 1932
Nitzschia aerophila Hustedt 1942
Nitzschia bacillarieformis Hustedt 1922
Nitzschia disputata J.R. Carater 1971
Nitzschia harderi Husedt 1949
Nitzschia modesta Hustedt 1950
Nitzschia terrestris (J.B. Petersen) Hustedt 1934
Nitzschia valdestriata Aleem & Hustedt 1951
Orthoseira dendroteres (Ehrenberg) Genkal & Kulikovskiy in Kulikovskiy et al. 2010
Orthoseira roseana (Rabenhorst) Pfitzer 1871
Pinnularia borealis Ehrenberg 1843
Pinnularia frauenbergiana E. Reichardt 1985
Pinnularia krookii (Grunow) Hustedt 1942
Pinnularia largerstedtii (Cleve) Cleve-Euler 1934
Pinnularia obscura Krasske 1932
Simonsenia delognei (Grunow) Lange-Bertalot 1979
Stauroneis agrestis J.B. Petersen 1915
Stauroneis borrichii (J.B.Petersen) J.W.G.Lund 1946
Stauroneis gracillima Hustedt 1943
Stauroneis lundii Hustedt 1959
Stauroneis muriella J.W.G. Lund 1946
Stauroneis obtusa Lagerstedt 1873
Surrirella terricola Lange-Bertalot & Alles 1996
Tryblionella debilis Arnott ex O’Meara 1873

Reference

Schaumburg, J., Schranz, C., Steizer, D., Hofmann, G., Gutowski, A. & Forester, J. (2006).  Instruction protocol for the ecological assessment of running waters for implementation of the EC Water Framework Directive: macrophytes and phytobenthos.  Bavarian Environment Agency

Tales from a dry river bed …

Two weeks ago I stood in a dry stream bed at Castle Eden Dene, wondering at the absence of water yet also conscious that many of the stones that littered the surface had a slipperiness that suggested not only that they had been wet relatively recently, but also that the surface biofilms (which impart this slipperiness) might still be intact.   A first look at a portion of this film under my microscope suggested that this might well be the case: I could certainly see some diatoms, and some green algae cells, but most were very small and that there was also a lot of particles, both inorganic and organic, that made viewing these algae quite difficult.   Since then, I’ve prepared a permanent slide from this material, so I can now take a closer look and get a better idea of what diatoms thrive in a dry stream bed in mid-winter in northern England.

A quick analysis of the sample found 34 species, of which four were abundant (comprising over 60% of the total) and the remainder were relatively infrequent.   The most abundant species was Amphora pediculus, which I’ve written about before, and which was not a surprise, as it is a species that thrives in the hard water that I would have expected in a stream draining a limestone catchment.  The other three common species wereHumidophila contenta, Luticola muticaand Simonsenia delognei, all of which are known to survive in habitats that are not permanently submerged.   These are relatively uncommon in the typical samples that I encounter but when they do occur in large numbers, they are often found together.   It is another facet of the “London Bus” paradigm that I described in the previous post, except this time it is a characteristic assemblage of species from different genera, rather than from a single genus or family.

Castle_Eden_diatoms_Jan19

Some of the diatoms from Castle Eden Burn, January 2019: a. Nitzschia nana; b. – g. Luticola mutica; h. – k. Humidophila contenta.   Scale bar: 10 micrometres (= 1/100thof a millimetre). 

Diatoms in the genus Humidophilahas changed names twice over the course of my career.   Back in the 1980s, species from this genus, as well as Luticolawere considered to be part of the Navicula which was regarded as a “dump for all bilaterally symmetrical [e.g. boat-shaped] raphid diatoms lacking particularly distinctive features” according to Frank Round, Dick Crawford and David Mann.    They split several groups of species away from Naviculato create new genera, one of which was Luticola.  In other cases, to resurrect old genera that had been subsumed into Naviculain the first half of the 20thcentury.  One of these resurrected genera was Diadesmiswhich differed from “true” Naviculain several respects, not least of which was a tendency to form ribbon-like colonies.   A more recent study suggested that Diadesmis, itself, needed to be split, with several species being moved to yet another new genus, Humidophila.   Unfortunately, the criteria on which this was based are not easily seen with the light microscope.  However, one by-product of this split was that all the species within the genera that are associated with damp, rather than fully-submerged habitats, ended up in the new genus rather than in Diadesmis.   That lends weight to the split, suggesting that there is more to the separation than just minor differences in the details of the cell wall.

The final species that was common in Castle Eden Burn was Simonsenia delognei.   This is another small diatom and, as I could not get good photographs from this sample, I have included photographs from another site to show what it looks like.  It is a very delicate diatom, easily overlooked when scanning a slide, particularly as it usually only occurs in small numbers.  That, again, might be because I usually look at samples from fully-submerged habitats.   Here, it formed about 12 per cent of the total number of valves, which is four times as many as I have previously found.

Simonsenia_delognei.jpg

Simonsenia delogneifrom Ballyfinboy River, Co. Tipperary, August 2014.   Scale bar: 10 micrometres (= 1/100thof a millimetre).  Photographs: Lydia King.

I’m quite intrigued, now, to see how the algal communities change over the course of the year. Are these diatoms that can tolerate drying ever-presents or will their proportions fluctuate over the course of the year as the stream comes and goes?   And what is it that makes some diatoms cope with these dry periods?   The ability to live out of water is associated with a few genera in particular, so what is it about their genetic make-up that lets them thrive.  What about Amphora pediculusand the other diatoms that I associate with submerged habitats? Am I looking at dormant but viable cells (I did not see many healthy chloroplasts when I made my initial observations) or are these diatom carcasses strewn across an arid desert?    At the risk of sliding into metaphor-overload, does this mean that Humidophila, Luticolaand Simonseniaare the cacti of the diatom world?

References

Lowe, R.L., Kociolek, P., Johannsen, J.R., van de Vijver, B., Lange-Bertalot, H. & Kopalová, K. (2014).  Humidophilagen. nov., a new genus for a group of diatoms (Bacillariophyta) formerly within the genus Diadesmis: species from Hawai’I, including one new species.  Diatom Research29: 351-360.

Round, F.E., Crowford, R.M. & Mann, D.G. (1990).  The Diatoms: Biology and Morphology of the Genera.   Cambridge University Press, Cambridge.