Puzzling puddles on the Pennine Way …

We were in Upper Teesdale last weekend for one of our regular walks through the reserve,  hoping to catch an early glimpse of the spring gentians (Gentiana verna) for which Teesdale is famous (see “Blue skies and blue flowers in Upper Teesdale …”)  but, before we got to the sugar limestone grassland where these live, we had to walk along a length of the Pennine Way from Langdon Beck towards Cauldron Snout.  After a cold, wet spring we have had a period of warm, dry weather and we were walking under blue skies in shirtsleeves.   Puddles, unusually for this part of the world, were a rarity and, stepping across one of the few that persisted, I noticed a cloud of tadpoles.

Now frog spawn and tadpoles are quite common in Upper Teesdale at this time of year and barely deserve a second look.   However, the water in this particular puddle had a reddish-brown tinge of a slightly different hue to the mud around the margins.  This suggested to me that it was probably some kind of algae and that it might be worth taking a small sample in order to see what the tadpoles were feasting upon.

A puddle straddling the Pennine Way in Upper Teesdale with the cloud of tadpoles at the right hand side.  The reddish-brown colour is caused by Trachelomonas.   The lower picture and inset show close ups of the tadpoles (about a centimetre long) feeding on algae.  

Once I had a drop of this suspension on a slide and peered through my microscope, the nature of the coloration revealed itself to be a mass of tiny almost-circular cells moving rapidly across the field of view.   Taking the magnification up yet further revealed these cells to be Trachelomonas, a relative of Euglena (see “More from Loughrigg Fell …”).   Cells of Trachelomonas are enclosed in a rigid case called a “lorica”, which means that the cells are not constantly changing shape, as is the case for Euglena.   This lorica, in turn, is often impregnated with iron and manganese salts, which impart a reddish-brown tinge seen both in the micrographs of individual cells and in the colour of the water in the puddle.  Like most species of Euglena, Trachelomonas has a single flagellum, which emerges from the lorica through an apical pore surrounded by a “collar”.   I’ve included a link to a YouTube video which shows the movement of individual cells.  The lorica can be ornamented with warts, granules or short spines and these can be used to differentiate the species.

Trachelomonas from a puddle straddling the Pennine Way in Upper Teesdale.  The upper photograph shows the reddish-brown tint that the cells impart to the water in the puddle and the lower photographs show individual cells.  The flagellum is particularly clear on the cell second from left whilst the ornamentation on the lorica is obvious on the right hand cell (possibly a different species).  Scale bar: 20 micrometres (= 1/50th of a millimetre).

https://www.youtube.com/watch?v=cFUzjFGIGq8&feature=youtu.behttps://youtu.be/cFUzjFGIGq8

A short video of Trachelomonas illustrating the mode of movement, powered by the single flagellum.  This video was taken the day after the sample was collected, by which time many of the cells had ceased movement.

Fifty-five species of Trachelomonas have been recorded from Britain and Ireland, along with 15 forms and varieties.   Curiously, County Durham is a “hot spot” for this genus, with ten species recorded from Cassop Vale, just a few kilometres from where I live, and six from Croft Kettle (both locations have been the subject of posts on this blog).  The reason for this is, however, rather prosaic: when the Freshwater Algal Flora of the British Isles was being written, there were no UK-based experts on several groups of algae, including the Euglenophyta (see “An inordinate fondness for … algae”).   Konrad Wołowski, a Polish specialist, was invited to write the chapter for this group and was flown over for a trip around the country to get to know the British Euglenophyta flora.  One of the stops on this tour was Durham, where Brian Whitton introduced him to local sites.   As ever, when examining the distribution of the less conspicuous members of plant and animal kingdoms, one has to ask whether a “hot spot” represents a genuine biological phenomenon or is simply the result of intensive activity by one of the few people who know what they are looking for.

By the way, if you are interested in the natural history of this area, it is worth digging out the latest version of The Natural History of Upper Teesdale, which has just been published by Durham Wildlife Trust.   I contributed to the chapter on freshwater life but there is much here about all aspects, from geology and geomorphology through to the “Teesdale rarities” and the people who live in the dale.   You can find more details here .

References

Gater, S. (2018) (editor).  The Natural History of Upper Teesdale.   Mosaic, Middleton-in-Teesdale / Durham Wildlife Trust.

John, D.M., Whitton, B.A. & Brock, A.J. (2011). The Freshwater Algal Flora of the British Isles. 2nd Edition. Cambridge University Press, Cambridge.

Advertisements

Eutrophic or euphytic?

A paper has just been published that should be required reading for anyone interested in the management of nutrients in in ecology.   It is a follow-up of a 2006 paper with the catchy title “How green is my river” that set out to provide a conceptual framework for how rivers responded to enrichment by nutrients.   That original paper contained several good ideas but, crucially, not all of them were underpinned by evidence.  A decade on, several of the predictions and statements made in that original paper have been tested, and the time has come to re-examine and modify that original conceptual model.

My reaction to the 2006 paper was that it was very interesting but not fully reflective of the rivers in my part of Britain, whose rougher topography produced quite different responses to nutrient enrichment than that proposed in their original model.   That criticism has been addressed in the revised version, which places greater emphasis on the physical habitat template, which means that it is more broadly applicable than the original version.   But that, in turn, got me wondering about the continued relevance of a term such as “eutrophication” to rivers.

People have been using the term “eutrophic” to describe lakes with high concentrations of nutrients since early in the 20th century.   As the century progressed, evidence of a causal relationship between inorganic nutrients and algal biomass, and the consequences for other components of lake ecosystems grew.   With this foundation, it has then become possible to predict the benefits of reducing nutrients and there are plenty of case studies, particularly from deep lakes, that demonstrate real improvements as nutrient concentrations have declined.

Attempts to apply the same rationale to rivers have, however, met with far less success.   Legislation to reduce nutrients in rivers has been in force in Europe since 1991 (the Urban Wastewater Treatment Directive, followed by the Water Framework Directive) and whilst this has led to reductions in concentrations of phosphorus in rivers (see  “The state of things, part 2”), there has, in most cases, not been a corresponding improvement in ecology.   There are a number of reasons for this but, at the heart, there was a failure to understand that the tight coupling between nutrients and biology that was the case in deep lakes did not also occur in running waters.   What was needed was recognition of fundamental differences between lakes and rivers, and “How green is my river?” and, now, this new paper have both contributed to this.

However, one consequence of recognising the importance of the physical habitat template alongside nutrients is to challenge the relevance of the term “eutrophic” when describing rivers.   “Eutrophic” literally means “well-nourished” so is appropriate in situations where high nutrients cause high plant or algal biomass.   This high biomass (strictly speaking, the primary production arising from this biomass) then creates problems for the rest of the ecosystem (night-time anoxia caused by plants consuming oxygen being a good example).   If high biomass can arise due to, let’s say, removal of bankside shade or alteration to the flow regime, perhaps (but not always) in combination with nutrients, then perhaps we need a term that does not imply a naïve cause-effect relationship with a single pressure?

My suggestion is to shift the focus from nutrients to plant growth by using the term “euphytic” (“too many plants”) as this would shift the emphasis from simply driving down nutrient concentrations (expensive and not always successful) towards reducing secondary effects.  It is possible that strategies such as planting more bankside trees, for example, or altering the flow regime or channel morphology (see “An embarrassment of riches …”) may be just as beneficial, in some cases, as reducing nutrient concentrations.   That said, we also have to bear in mind that nutrients may have an effect well downstream, so focus on amelioration of effects within a particular stream segment will never be a complete solution.

I should emphasise that a lot of work has been done in recent years to understand the concentrations of nutrients that should be expected in undisturbed conditions, and also to understand the nutrient concentrations that lead to changes in community structure in both macrophytes and algae.   These show that many rivers around Europe do have elevated concentrations of nutrients and I am not trying to side-step these issues.  I do, however, think it is important that regulators can prioritise those rivers in greatest need of remediation and, in most cases, they do this without considering the risk of secondary effects.

It is, largely, a matter of semantics.   I have been involved in many conversations over the past couple of decades about how to improve the state of our rivers.  Many of those have centred on the importance of reducing nutrient concentrations (which would be, indisputably, a major step towards healthier rivers).  But there is more to it than that.  And Mattie O’Hare and colleagues are helping to open up some new vistas in this paper.

Note: the photograph at the top of this post shows the River Wear at Wolsingham.  This stretch of the river captures many of the challenges facing river ecologists: nutrient concentrations are relatively low and there is good bankside shade.  However, the flow of the river is highly altered due to impoundments upstream and a major water transfer scheme.  How do all these factors interact to create the often prolific algal growths that can be seen here, particularly in winter and spring?

References

Hilton, J., O’Hare, M., Bowes, M.J. & Jones, J.I. (2006).  How green is my river?  A new paradigm of eutrophication in rivers.   Science of the Total Environment 365: 66-83.

O’Hare, M.T., Baattrup-Pedersen, A., Baumgarte, I., Freeman, A., Gunn, I.D.M., Lázár, A.N., Wade, A.J. & Bowes, M.J. (2018).  Responses of aquatic plants to eutrophication in rivers: a revised conceptual model.   Frontiers in Plant Science.   9: 451

Grazing on algae …

I comment on the role that grazers play in controlling algal biomass in rivers in these posts and this is the time of year when I, myself, take a more participatory role.   As it is spring, Lemanea fluviatilis is thriving in our rivers (the cleaner ones, at least) and I could not resist grabbing a couple of handfuls whilst out in the field recently for culinary purposes.

This time, I followed the routine I described in “More from the Lemanea cookbook … ” and washed, air-dried and then cut-up some Lemanea filaments into short lengths (they need to be about a centimetre long, otherwise they can form clumps).   My experience is that the fishy taste of Lemanea is a fine complement to freshwater fish, so decided to use it in a warm potato salad which I then served underneath a salmon fillet seasoned and sprinkled with dill and then wrapped in foil and baked with a couple of knobs of butter.

The warm potato salad needs a mayonnaise made from one egg yolk and about 150 ml of olive oil into which a couple of tablespoons of lemon juice are stirred, along with salt and pepper.   Add a generous handful of dried Lemanea to this and leave to soften for about 20 minutes, and also add a teaspoon of capers and a small handful of land (or water) cress.  Cook and drain enough new potatoes for two, then cut these into small chunks and stir the mayonnaise and algae mixture into these.   Divide between two warmed bowls and place half the salmon fillet on top of each.  Finally, add a few fresh pea shoots as a garnish, along with a wedge of lemon, and serve.

Definitely worth repeating.

Warm potato salad with lemon and Lemanea, served with salmon fillets.

That’s funny …

The most exciting phrase to hear in science, the one that heralds new discoveries, is not “Eureka!” but “That’s funny”
Attributed to Issac Asimov

I have visited Croasdale Beck, in western Cumbria, twenty-eight times since 2015 and I thought I was beginning to understand it’s character (see “A tale of two diatoms” and “What a difference a storm makes”).   It is the unruly sibling of the River Ehen which, usually, offers a far less amenable environment for freshwater algae.  Last week, however, as we walked down the track towards the stream, we were confronted with the unexpected sight of a river bed that was bright green.  Our measurements, too, showed that not only was there a lot of algae in absolute terms, but there was far more here than we had measured in the River Ehen.  Usually, the situation is reversed, with the Ehen having more than Croasdale Beck.

Croasdale Beck at NY 087 170 looking upstream in April 2018.   The position of the gravel bar has shifted over the time that we have visited, with the wetted channel originally being at the right hand side, rather than being split into two.

It was hard to capture the extent of the algae growing on the river bed in a photograph, but the macroscopic image below captures the colour of the growths well, and you’ll have to use your imagination to scale this up to cover half of the stream bed.  Under the microscope, these growths turned out to be virtual monocultures of the green alga Draparnaldia glomerata.  This is common in clean rivers in spring time, and I often find it in the nearby River Ehen (see “The River Ehen in February”).  What my images do not show is the mucilage that surrounds the filaments.   In some cases, the growths can be almost jelly-like, so prolific is this mucilage.   One of the roles of this mucilage plays is to serve a matrix within which enzymes released by the fine hairs at the end of the filaments can act to release nutrients bound into tiny organic particles (see “A day out in Weardale …”).

Growths of Draparnaldia glomerata in Croasdale Beck (NY 087 170) in April 2018.  The upper image shows the filaments growing on submerged stones and the lower image shows the bushy side-branches growing from a central filament.  Scale bar: 100 micrometres (= 1/10th of a millimetre).

We also sample a site a couple of kilometres downstream on Croasdale Beck and, here again, the river bed was smothered in green growths.  I assumed that this, too, was Draparnaldia glomerata but, when I examined the filaments under the microscope, it turned out to be a different alga altogether: Ulothrix zonata (see “Bollihope Bhavacakra” and links therein).   There is little difference between the two sites that might explain this: the latter is slightly lower and is surrounded by rough pasture whilst the other is closer to the fells.   However, I have seen both Ulothrix zonata and Draparnaldia glomerata at several other sites in the vicinity, and a simplistic interpretation based on agricultural enrichment does not really work.

There were also a few obvious differences in the diatoms that I saw in the two samples.   In both cases, we sampled stones lacking green algae but, instead, having a thick brown biofilm.  Several taxa were common to both sites – Odontidium mesodon, for example (broadly confirming the hypothesis in “A tale of two diatoms …”) and Meridion circulare was conspicuous in both.   However, the lower site had many more cells of “Ulnaria ulna” than the upper site.   Again, there is no ready explanation but, at the same time, neither green algae or diatoms at either site suggests anything malign.

Filaments of Ulothrix zonata at Croasdale Beck (NY 072 161).   The upper filament is in a healthy vegetative state (although the cell walls are not as thickened as in many populations).  The lower filament is producing zoospores.   Scale bar: 25 micrometres (= 1/40th of a millimetre).

Diatoms in Croasdale Beck, April 2018.   a. upper site: note the abundance of Odontidium mesodon, plus cells of Gomphonema cf exilissimum, Achnanthidium minutissimum and Meridion circulare; b. lower site: note the presence of “Ulnaria ulna” as well as several of the taxa found at the upper site.   Scale bar: 25 micrometres (= 1/40th of a millimetre).  

So where does this take us?  I talked about the benefits of repeat visits to the same site in “A brief history of time wasting …” and I think that these data from Croasdale are making a similar point.  By necessity, most formal assessments of the state of ecology are based on very limited data, from which, at best, we get an estimate of the “average” condition of a water body over a period of time.  Repeat visits might lead to a more precise assessment of the “average” state but also give us a better idea of the whole range of conditions that might be encountered.  Here, I suspect, we chanced upon one of the extremes of the distribution of conditions.   Cold, wet weather in early spring delayed the growth of many plants – aquatic and terrestrial – as well as the invertebrates that graze them.   Then the period of warm, dry conditions that preceded our visit gave the algae an opportunity to thrive whilst their grazers are still playing “catch-up”.  I suspect that next time we visit Croasdale Beck will have its familiar appearance.   It is, nonetheless, sobering to think that this single visit could have formed fifty-percent of the evidence on which a formal assessment might have been made.

 

Hilda Canter-Lund competition 2018

The competition for the 2018 Hilda Canter-Lund Award is now underway and you have until 25 May to submit images of algae – microscopic or macroscopic, marine or freshwater – for consideration.  I’ve written several posts over the last few years with advice on what makes a great image of an algae and thought that it might be useful to list them all here.   Although I suspect that the winning photograph is already nestling on someone’s hard drive, careful use of editing software could well make the difference between an image that gets onto the shortlist and one that does not.  So, read on:

How to win the Hilda Canter-Lund competition

How to win the Hilda Canter-Lund competition (2)

How to win the Hilda Canter-Lund competition (3)

How to win the Hilda-Canter-Lund competition (4)

Finally, you may find inspiration in the archive of previous winners and short-listed entires on the British Phycological Society’s website.

Good luck!

(The image at the top of this post is Luis Henriquez’s short-listed entry from last year showing Carpoglossum confluens emerging from a mass of Caulpera triferia in the coastal waters off Tasmania.)

Cypriot delights …

I could not return from my visit to Cyprus without an algal sample and a fine opportunity presented itself early last week when we visited the Avgás Gorge, on the Akámas peninsula at the west coast of Cyprus, just north of Pathos.  This is a spectacular limestone ravine whose steep sides offered welcome relief from the Mediterranean sun.  At points, as in the photograph above, the ravine narrowed to just a few metres wide, reminiscent of the siq which guards the entrance to Petra except that instead of exquisite carvings we stumbled across a Russian team conducting a glamour shoot.

A small stream made its way down the gorge.  The presence of woody debris at intervals suggested a considerable head of water during the winter months but, at this time of year the water has reduced in power, tumbling across a series of boulders into stagnant pools, interspersed with short runs shaded either by the high cliffs or the vegetation that flourished away from the harsh glare of the sun.

In the sections where water was still running there were clumps of Chara tangled up with filamentous algae, with plenty of bubbles of oxygen as evidence that both were busily photosynthesising away.  The filamentous algae was a coarse unbranched filament that was clearly a relative of Cladophora but which did not match any of the genera or species that I had encountered before (see “Fieldwork at Flatford” for similar situation).   There were pebbles and cobbles between these clumps, their surfaces criss-crossed by the galleries of caseless caddis larvae – probably Psychomyiidae, according to Richard Chadd.

Chara growing in the stream at Avgás Gorge in western Cyprus, April 2018.

Cladophora or a relative growing in the stream at Avgás Gorge in western Cyprus, April 2018.  The scale bar is 50 micrometres (= 1/20th of a millimetre). 

There were a number of diatoms present too, the most abundant of which was a chain-forming Ulnaria.  Unfortunately, despite having just co-authored a paper on Ulnaria from Cyprus, I cannot name the species, as I saw no cells in valve view.  I will have to return to this subject once I have prepared a permanent slide from the sample that I brought back.   The chloroplasts in the illustration below are not in a very healthy state because the sample lived in a fridge for almost a week before I was able to get it under a microscope.  Had I looked at this sample 20 years ago, I would have assumed that I was looking at a species of Fragilaria, as most keys then stated categorically that Synedra (the former generic name) were solitary rather than chain-forming.  However, we now know that there are several Ulnaria species that form chains although most that I see in my regular haunts in the UK do not.   Our paper states that the species we describe form short chains although, as we worked from cleaned samples collected by other people, I now wonder if that was an artefact of the preparation process and whether these, too, formed longer chains in their living state.

A chain of Ulnaria from the stream at Avgás Gorge in western Cyprus, April 2018.  Scale bar: 20 micrometres (= 1/50th of a millimetre).

Though it is rare for me to stray into describing the invertebrate life of streams, the Psychomyiidae are actually an important part of the story here, as the larvae graze algae from the surface of the stones.  They create a silk tube and this, in turn, becomes covered with fine sediment to create the galleries that are visible in the picture.   We know that invertebrates can change the composition of the attached algae by grazing but I sometimes wonder if the caseless caddis larvae also change the composition by creating myriad patches of very fine sediment across the rock surface.   If you look closely you can also see a couple of Simuliidae (blackfly) larvae.  These attach themselves to the rock by a circle of hooks at their last abdominal segment (I think that is “bum” in entomological language) and then use fan-like structures around their mouths to filter tiny particles from the water.  However, I have also seen Simuliidae larvae bent double on rock surfaces in order to hoover up particulate matter and algae that live there.

That, I thought, was just about enough natural history for one day.   I put my toothbrush and bottle back into my rucksack and made my way back down until, turning the corner, I stumbled across the Russian glamour models.   I’ve often written about the similarities between freshwater ecosystems in different parts of Europe but you don’t often see a bikini – or less – in April in my cold, damp corner.

Galleries of Psychomyiidae larvae on the top of a limestone cobble from the stream at Avgás Gorge in western Cyprus, April 2018.

Reference

Cantonati, M., Lange-Bertalot, H., Kelly, M.G. & Angeli, N. (2018).  Taxonomic and ecological characterization of two Ulnaria species (Bacillariophyta) from streams in Cyprus.   Phytotaxa 346: 78-92.

Wallace, I. (2003).   The Beginner’s Guide to Caddis (order Trichoptera).  Bulletin of the Amateur Entomologists’ Society 62: 15-26.

Letter from Cyprus

20180417-171119.jpg

Travel can be one of the most rewarding forms of introspection ….
Laurence Durrell, Bitter Lemons, 1957

When I stepped off flight EZY1973 from Manchester to Paphos on Saturday night I passed a personal milestone. Arriving in Cyprus means that I have now visited all 28 Member States of the European Union. Starting with (West) Germany in 1972 on an exchange visit before the UK was even a member of the European Economic Community, followed shortly after by a family holiday to southern Austria (where my father had been stationed just after the war) with a day trip to Slovenia (then part of Yugoslavia), the number started to increase in the late 1990s when I became involved in the work of CEN, the European Standards Agency and, from the mid-2000s onwards, with the intercalibration exercise associated with the Water Framework Directive. A few years ago I made a list and realised just how many I had visited, after which, I have to admit, my choice of conference and holiday destinations was driven by this rather childish whim. Latvia, Malta and Bulgaria, all subjects of posts on this blog, were ticked off, leaving just Cyprus. This year, a family holiday to celebrate my mother’s 80th birthday provided the opportunity and, after some shameless lobbying, we had booked a villa near Paphos via AirBnB and were on our way.

How Europe has changed in the 47 years since my first overseas trip. Twelve countries were behind the Iron Curtain, three of the remainder were right-wing dictatorships. Two have merged (East and West Germany) whilst seven have become disentangled from previous relationships (the Baltic States from the USSR, Slovenia and Croatia from the former Yugoslavia and the two former constituents of Czechoslovakia from each other). Cyprus, from where I am writing, was in political chaos in the early 1970s. A former British colony whose territory was argued over by Greece and Turkey, it was soon to be split into two, separated by a buffer zone. I used to browse my Collins World Atlas assuming national borders to be fixed and immutable; the older and wiser me wonders where (and when) the next changes will come from.

The intercalibration exercise, in particular, was an opportunity for an exchange of ideas and I counted co-authors from 23 of the 28 EU states on my publication list. Looking back, these papers show remarkable consistency in some aspects of ecology across Europe whilst, in other respects, I am much more cautious about assuming that knowledge gained in my damp corner of north-west Europe can be applied to warmer and more continental regions. This publication list includes, incidentally, two papers about Cyprus, despite never having either visited before or having a native Cypriot on my list of co-authors. In the first paper, we worked with an Austrian employed by the Ministry of the Environment but, for the second, the samples were collected and analysed by Italians and Germans whilst I helped out with data analysis. Scientific colonialism is not, perhaps, dead?

My favourite? I don’t think I should single one of the 28 out. The food and culture of the warm lands of the Mediterranean basin draw me but I think that the parched summer landscapes would lose their appeal if I was there for too long. I find the grey, damp climate of my own corner of Europe wearisome but the greenness of the Spring and Summer, and the Autumn colours almost compensate. My ideal, in other words, seems like it should be a semi-nomadic existence but that, too, would pale with time. The truth is that, for me, elsewhere, being wanted, is always more wondered at ….

20180417-171250.jpg