Keeping the cogs turning …

A few algae lift my soul when I see them under the microscope through their beauty.   To see such intricate yet symmetrical organisation in something too small to be visible with the naked eye never ceases to amaze and delight me.   One of the genera that has that effect is the green alga Pediastrum, which forms cog-like colonies: flat plates of cells whose outer members bear horn-like projections.   One of its representatives, Pediastrum boryanum, was common in the River Wear when I visited recently (see previous post).   You can see, from the illustration above (the scale bar is 20 micrometres – 1/50th of a millimetre – long), the characteristic disc-like arrangement of cells, always in multiples of four (there are 16 in the colony above).   There are many species of Pediastrum, differing in the shape of both the inner and marginal cells, and the number and length of the horns.

I have found Pediastrum on many occasions in the Wear in the past, but never quite as abundant as it was in my most recent samples.  Pediastrum boryanum is the species I find most often, here and elsewhere, but other species occur too.  I have also found Pediastrum in some unusual places, including deep in lake sediments when I was searching for fossil pollen grains and there is evidence that the cell walls of Pediastrum contain both silica and a sporopollenin-like material (sporopollenin is the extremely tough material found in the outer walls of pollen grains (which probably explains why it had survived the fierce mix of chemicals that we used to prepare the lake sediments for pollen analysis).   I am guessing that the sporopollenin and silica both add some structural integrity to the cells.   There are references in the literature to Pediastrum being planktonic but I often find it in samples from submerged surfaces and associated with submerged macrophytes, so I suspect that it is one of those species that moves between different types of habitat.  It should not really be a surprise that a relatively large colonial alga with a payload of silica and sporopollenin in addition to the usual cellulose cell wall, is going to be common in benthic films in a river towards the end of a long, dry summer.

Pediastrum is another genus that has been shaken up in recent years as a result of molecular studies.  According to these, Pediastrum boryanum should now be called Pseudopediastrum boryanum although the Freshwater Algal Flora of the British Isles continues to use the old name.   Not everyone agrees with this split (see McManus and Lewis’ paper in the list below) but the divisions suggested by molecular data do also seem to match differences in morphological characteristics of the group (see Table below).

Pediastrum is part of the family Hydrodictyaceae and, as I was writing this, it occurred to me that I have never written about another interesting member of this family, Hydrodictyon reticulatum.  As I like to accompany my posts with my own photographs, I spent part of yesterday afternoon tramping around a location where I have found Hydrodictyon in the past.   All I got for my troubles, however, was two damp feet, so that post will have to wait for another day.

 

Differentiating characteristics of Pediastrum and similar genera (after Krienitz & Bock, 2011).

Genus Features
Pediastrum Flat coenobia with intercellular spaces, marginal cells with two lobes
Lacunastrum Flat coenobia with large intercellular spaces, marginal cells with two lobes
Monactinus Flat coenobia with large intercellular spaces, marginal cells with one lobes
Parapediastrum Flat coenobia with intercellular spaces, marginal cells with two lobes, each divided into two projections
Pseudopediastrum Flat coenobia without intercellular spaces, marginal cells with two lobes, each with a single projection
Sorastrum Three-dimensional coenobia, each cell with two or four projections.
Stauridium Flat coenobia without intercellular spaces, marginal cells “trapezoid”* with deep incision to create two lobes, each with a concave surface, though the lobes are not really extended into “projections”

* not all of the illustrations show marginal cells that are strictly “trapezoid” (e.g. with at least one pair of parallel sides).

References

Buchheim, M., Buchheim, J., Carlson, T., Braband, A., Hepperle, D., Krienitz, L., Wolf, M. & Hegewald, E. (2005).  Phylogeny of the Hydrodictyaceae (Chlorophyceae): inferences from rDNA data.  Journal of Phycology 41: 1039-104.

Good, B.H. & Chapman, R.L. (1978).  The ultrastructure of Phycopeltis (Chroolepidaceae: Chlorophyta). I. Sporopollenin in the cell walls.  American Journal of Botany 65: 27-33.

Jena, M., Bock, C., Behera, C., Adhikary, S.P. & Krienitz, L. (2014).  Strain survey on three continents confirms the polyphyly of the genus Pediastrum (Hydrodictyaceae, Chlorophyceae).  Fottea, Olomouc 14: 63-76.

Krienitz, L. & Bock, C. (2012).  Present state of the systematics of planktonic coccoid green algae of inland waters.   Hydrobiologia 698: 295-326.

McManus, H.A. & Lewis, L.A. (2011).  Molecular phylogenetic relationships in the freshwater family Hydrodictyaceae (Sphaaeropleales, Chlorophyceae), with an emphasis on Pediastrum duplex.   Journal of Phycology 47: 152-163.

Millington, W.F. & Gawlik, S.R. (1967).  Silica in the wall of PediastrumNature (London) 216: 68.

Advertisements

Talking about the weather …

September is here.  When I visited this site two months ago we were in the midst of the heatwave and the samples I collected from the Wear at Wolsingham were different to any that I have seen at this location before, dominated by small green algae (see “Summertime blues …”).   As I drove to Wolsingham this time, I could see the first signs of autumn in the trees and the temperatures are more typical of this time of year.   We have had rain, but there has not been a significant spate since April and this means that there has been nothing to scour away these unusual growths and return the river to its more typical state.

That does not mean, however, that there have been no changes in the algae on the submerged stones.  Some of these differences are apparent as soon as I pick up a stone.  Last month, there was a thin crust on the surface of the stones; that is still here but now there are short algal filaments pushing through, and the whole crust seems to be, if anything, more consolidated than in July, and I can see sand grains amidst the filaments.   Biofilms in healthy rivers at this time of year are usually thin, due to intense grazing by invertebrates, so I’m curious to know what is going on here this year.

A cobble from the River Wear at Wolsingham, showing the thick biofilm interspersed with short green filaments.   Note, too, the many sand grains embedded in the biofilm.  The bare patch at the centre was created when I pulled my finger through it to show how consolidated it had become.  The cobble is about 20 centimetres across.

Many of the organisms that I can see when I peer at a drop of my sample through my microscope are the same as those I saw back in July but there are some conspicuous differences too.   There are, for example, more desmids, some of which are, by the standards of the other algae in the sample, enormous.   We normally associate desmids with soft water, acid habitats but there are enough in this sample to suggest they are more than ephemeral visitors.   And, once I had named them, I saw that the scant ecological notes that accompanied the descriptions referred to preferences for neutral and alkaline, as well as nutrient-rich conditions.  Even if I have not seen these species here before, others have seen them in similar habitats, and that offers me some reassurance.    In addition to the desmids, there were also more coenobia of Pediastrum boryanum and Coelastrum microporum compared to the July sample.

A view of the biofilm from the River Wear at Wolsingham on 1 September 2019. 

There were also more diatoms present than in my samples from July – up from about 13 percent of the total in July to just over 40 per cent in September.   The most abundant species was Achnanthidium minutissimum, but the zig-zag chains of Diatoma vulgare were conspicuous too.  The green filaments turned out to be a species of Oedogonium, not only a different species to the one I described in my previous post but also with a different epiphyte: Cocconeis pediculus this time, rather than Achnanthidium minutissimum.   I explained the problems associated with identifying Oedogonium in the previous post but, even though I cannot name the species, I have seen this form before (robust filaments, cells 1.5 to 2 times as long as broad) and associate it with relatively nutrient-rich conditions.  That would not normally be my interpretation of the Wear at Wolsingham but this year, as I have already said, confounds our expectations.   I did not record any Cladophora in this sample but am sure that, had I mooched around for longer in the pools at the side of the main channel, I would have found some filaments of this species too.

Desmids and other green algae from the River Wear at Wolsingham, 1 September 2019.  a. Closterium cf. acerosum; b. Closteriumcf. moniliferum; c. Cosmarium cf. botrysis; d. Closterium cf. ehrenbergii; e. Coelastrum microporum; f. Pediastrum boryanum.   Scale bar: 50 micrometres (= 1/20th of a millimetre).  

It is not just the differences between months this year that I’m curious about.  I did a similar survey back in 2009 and, looking back at those data, I see that my samples from August and September in that year had a very different composition.   There was, I remember, a large spate in late July or early August, and my August sample, collected a couple of weeks later had surprised me by having a thick biofilm dominated by the small motile diatom Nitzschia archibaldii.   My hypothesis then was that the spate had washed away many of the small invertebrates that grazed on the algae, meaning that there were few left to feed on those algae that survived the storm (or which had recolonised in the aftermath)..   As the algae divided and re-divided, so they started to compete for light, handing an advantage to those that could adjust their position within the biofilm.   This dominance by motile diatoms was, in my experience of the upper Wear, as uncommon as the assemblages I’m encountering this summer, though probably for different reasons.

Other algae from the River Wear at Wolsingham, September 2018.    The upper image shows Diatoma vulgare and the lower image is Oedogonium with epiphytic Cocconeis pediculus.   Scale bar: 20 micrometres (= 1/50th of a millimetre).

I suspect that it is the combination of high temperatures and low flows (more specifically, the absence of spates that might scour away the attached algae) that is responsible for the present state of the river.  This, along with my theory behind the explosion of Nitzschia archibaldii in August 2009, both highlight the importance of weather and climate in generating some of the variability that we see in algal communities in rivers (see “How green is my river?”).   The British have a reputation for talking about the weather.   I always scan the weather forecasts in the days leading up to a field trip, mostly to plan my attire and make sure that I will, actually, be able to wade into the river.  Perhaps I also need to spend more time thinking about what this weather will be doing to the algae I’m about to sample.

A hitchhiker’s guide to algae …

One of the recurring themes of this blog is the hidden delights of natural history for anyone prepared to take a closer look at unprepossessing locations, so it is appropriate that we have found some quite rich habitats within walking distance of our home in County Durham.   I’ve written before about visits to Crowtrees, a local nature reserve (see “More pleasures in my own backyard” and “Natural lenses”) and Heather is also writing a series of posts about the ever-changing flora of this small vale at the foot of the Permian limestone escarpment (see “Crowtrees LNR July 2018 part 2: gentians to grasses” for the most recent and links back to previous ones).   I visited again last week, taking Brian Whitton along for company.

His interest was the red alga Chroothece ricteriana, which I described in one of my earlier posts about Crowtrees but we did not find it on this particular visit.   Instead, my eye was drawn to soft clouds of green filaments that floated just above the bed of the pond.   When I looked closely under my microscope, I saw that these were thin filaments of Oedogonium.  Typically, these had no reproductive organs, so cannot be named (see “Love and sex in a tufa-forming stream” for a rare exception), but all showed characteristic “cap cells” (see lower illustration).

Growths of Oedogonium in Crowtrees pond, August 2018.   The frame width is about 30 centimetres.   The photograph at the top of the post shows Brian Whitton searching for algae during our visit.

The diatom Achnanthidium minutissimum was growing on small stalks attached to the Oedogonium filaments, often alone but also in pairs and stacks of four, as the diatom cells divided and re-divided.  Oedogonium is a rougher alga to the touch than filamentous genera such as Draparnaldia, Stigeoclonium and Spirogyra, and often carries epiphytes, and I presume the lack of mucilage is a factor in this.   Achnanthidium minutissimum is a diatom that is very common on the upper surface of submerged stones in both lakes and rivers, but it is not fussy and I often see it as an epiphyte if conditions are right.  In this case, I suspect that the very hard water of Crowtrees Pond is a factor: calcium carbonate is constantly being precipitated from the water to create a thin layer of “marl” (see photo in “Pleasures in my own backyard”).   This makes life difficult for a tiny diatom that cannot move, so hitch-hiking a ride on the back of a filamentous alga that floats about the lake bottom makes a lot more sense.

Oedogonium filaments with epiphytic Achnanthidium minutissimum, from Crowtrees pond, August 2018.  Scale bar: 20 micrometres (= 1/50th of a millimetre).  

Oedogonium is an adaptable genus.  It is also common in the River Ehen (soft water, low nutrients) and I also find it in lowland polluted rivers too.  Being able to name the species would, I am sure, help us to better understand the ecology but this is, as I have already mentioned, problematic (see “The perplexing case of the celibate alga”).   However, in each of the cases I’ve mentioned, the epiphytes are different (Achnanthidium minutissimum here, Tabellaria flocculosa and Fragilaria species in the Ehen, Rhoicosphenia and Cocconeis placentula in enriched lowland rivers) and I suspect that these might offer an easier way to interpret the habitat than the filaments themselves, at least until someone finds a stress-free way of naming them.

Comparing algae on a summer’s day …

I wrote about the effect of the long period of low flow in the River Wear a few weeks ago (see “Summertime Blues …”) and have, now, completed two dioramas depicting the state of the river in the main channel and in a filamentous algae-dominated backwater.  The first of these is dominated by free-living green algae, either single cells or coenobia (see note at end), which is a big contrast to the situation I recorded two months earlier when the assemblage was dominated by diatoms, with patches of filamentous green algae (see “Spring comes slowly up this way” and “A question of scale”).

I sent a small sample of the Wolsingham biofilm to Dave John for his opinion on the green algae, and he sent back a list with twenty one different green algae that he had found.  Fortunately, this confirmed my own original list, with Keratococcus bicaudatus, Scenedesmus, Desmodesmus and Monoraphidium all featuring.   He also commented that Keratococcus is hard to differentiate from Chlorolobium (which is also in his list) and that most of the green alga on his list are usually considered to be planktonic (Keratococcus and Chlorolobium are exceptions) although, as my earlier post suggested, these definitely formed a distinct biofilm on the surface of stones this year in the River Wear.

A diorama showing the biofilm in the River Wear at Woslingham, July 2018.   You can see coenobia of Demodesmuss communis (centre), Scenedesmus sp. (left) and Coelastrum microporum (right – half tucked behind a mineral particle, along with single cells of Keratococcus bicaudatus (upright cells) and Monoraphidium.  There are also some cells of Achnanthidium minutissimum on short stalks in the foreground and a cluster of Fragilaria gracilis cells in the background.

There seems to be little hard evidence on the habit of Keratococcus and Chlorobium apart from references to a preference for benthic habitats.   I have drawn them as upright cells, drawing on their similarity in form to Characium, for which there is better evidence of an upright habit (although Characium tends to grow on other algae, rather than on hard surfaces).  Whereas I often have a strong sense of the three dimensional arrangement of organisms within benthic biofilms, so little has been written about the preferences of these green algae that, apart from the Keratococcus, I have had to show them as a jumble of cells and coenobia across the picture frame.

The second diorama depicts the tangle of filamentous green algae that I found in the pools beside the main channel.  As I mentioned in my earlier post, these are species that I do not normally find at this site and are here, I presume, due to the long period of unusually warm weather and low flows.   One difference between these communities and that captured in my first diorama is that there is a more obvious organisation of the constituents here: the Cladophora filaments, though appearing as a tangle to us, form the foundation upon which epiphytes grow directly, but also around which Melosira filaments are entangled, rather like the lianas in a tropical rain forest.   The quantity of diatoms around the Cladophora is so great that their brown pigments completely mask the Cladophora’s green cells but note how the density of Cocconeis cells reduces towards the tips – the youngest parts of the filaments.

Depiction of filamentous algae growing in the margins of the River Wear at Wolsingham in July 2018, showing epiphytic Cocconeis pediculus and entangled Melosira varians.

There have been some recurring themes in my posts this summer: one is that UK rivers have been behaving quite differently to previous years, due to a combination of low flows (more accurately, a lack of the scour associated with high flows) and warm, well-lit conditions.   The low flows have also resulted, to some extent, in rivers becoming more physically heterogeneous, with side-pools and silty areas developing distinct assemblages of algae quite different to those encountered in the main channel.   Sometimes, the sum of these effects is for rivers to look less healthy than is usually the case.

The Wear at Wolsingham is one of those sites that I like to think I know well, having visited the location so many times over the past 30 years.  It is reassuring, in a rather humbling way, to know that it still has the capacity to surprise me.

Dave’s list of green algae from the Wolsingham biofilm, July 2018

Desmids
Closterium moniliferum
Closterium acerosum
Cosmarium botrytis
Cosmarium venustum
Staurastrum striatum

‘Chlorococcalean’ algae
Acutodesmus dimorphus
Coelastrum astroideum
(very small and atypical)
Coelastrum microporum (very small and atypical)
Chlorolobion braunii
Desmococcus olivaceum (subaerial species)
Desmodesmus communis
Desmodesmus subspicatus
Keratococcus bicaudatus

Monoraphidium arcuatum
Monoraphidium contortum
Monoraphidium griffithsia
Monoraphidium irregulare
Scenedesmus arcuatus
Pseudopediastrum boryanum
Tetradesmus obliquus
Tetraedron minimum

Note

A coenobium is a colony in which the cell number is fixed at the time of formation and not augmented subsequently.   Coenobia are particularly common in the Chlorococcalees.

Transitory phenomena …

Fieldwork in the River Ehen has been an unusually pleasurable experience over the past few months, even to the extent of abandoning waders altogether and wearing just a thin pair of neoprene beach shoes and shorts as I worked.   Curiously, there were few obvious signs of the prolonged period of low flow here, but that is partly due to the pumps installed by United Utilities to keep the river running whilst the lake was drawn down (see “Life in the deep zone …”).   I did, however, find some intriguing green patches on fine sediments at the margins.

Most of the bed in this part of the river consists of much coarser sediments than these which are, I suspect, silt and sand deposited on the occasions when Ben Gill (which joins the Ehen immediately below Ennerdale Water) is flowing.   Current velocity is lower at the edges of the river, allowing fine sediments to settle out and create temporary sandbanks.   One decent spate will be all that is needed, I suspect, to wash much of this downstream.  However, there has not been a period of prolonged high flow for several months and there is, as a result, a thin green mat of algae growing on the upper surface of this sediment.

Mats of Oscillatoria on fine sediments beside the River Ehen just downstream from Ennerdale Water, August 2018.   The total length of the mats in the left hand photograph is about one metre. 

I scraped up a small sample to examine under my microscope.  I was expecting to see the broad filaments of the cyanobacterium Phormidium autumnale which I often find at a site about five kilometres downstream (see “’Signal’ or ‘noise’?”) but what I saw was much narrower filaments, some of which were slowly gliding forwards and backwards.   These belong to a species of Oscillatoria, a relative of Phormidium that is common in the plankton.  A few species, however, do live on surfaces and can, as I could see in the Ehen, form mats.  I have, in fact, described a different mat-forming species of Oscillatoria (O. limosa) from the River Wear close to my home (see “More from the River Wear”) and this, too, had been favoured by a long period of warm weather and low flow.   The filaments in the River Ehen were much narrower – just a couple of micrometres wide – and had relatively long cells (two or three times longer than wide) but, in other respects, they clearly belonged to the same genus.

Microscopic views of Oscillatoria filaments from the River Ehen, August 2018.   The upper photograph was taken at medium magnification (400x) and the lower image was taken at 1000x.  The constant motion of the filaments means that it is not possible to use stacking software to obtain a crisp image.  Scale bar: 10 micrometres (= 1/100th of a millimetre). 

The motion that I could see is thought to be due to a layer of tiny fibres (“microfibrils”) which wind around the inner layer of the cell wall in tight spirals.   Movement is caused by waves that are propagated along these fibres, meaning that the filament actually rotates as it moves (though this is almost impossible to see with a light microscope).   The filaments can move either towards or away from light, depending on the intensity, at a speed of up to 11 micrometres per second (that’s about a millimetre a day or, for any petrolheads who are reading, 0.00004 kilometres per hour).  This allows the filaments can adjust their position so that they are neither in the dark nor exposed to so much light that they are likely to do damage to their photosynthetic apparatus (see “Good vibrations under the Suffolk sun” for more about this).   The result is that filaments will tend to converge, Goldilocks-style, at the point where light conditions are “just right”.  You can see some sediment particles settling on the top of the mat in one of the images and we can expect the filaments to gradually adjust their positions, incorporating these particles, over time.

Last year, I wrote about Microcoleus, a relative of Oscillatoria, which formed mats on saltmarshes and explained how this could be the first stage of colonisation of damp habitats by plants (see “How to make an ecosystem”).   We are seeing the same processes happening here, but the life expectancy of these mats is much lower.  They may well be gone next time I visit, depending on how the Cumbrian climate behaves over the next couple of weeks.   They are transitory phenomena, here today and gone tomorrow but, like the subjects of some of my other recent posts, particularly favoured by the long period of settled weather that we have enjoyed over recent weeks.

Reference

Halfen, L.F. & Castenholz, R.W. (1971).  Gliding motility in the blue-green alga Oscillatoria princeps.  Journal of Phycology 7: 133-145.

Note: you can read more about how the heatwave has affected fresh water in the Lake District in Ellie’s MacKay’s recent post on Freshwaterblog

Two-faced diatoms …

Back in March I reflected on the challenges involved in discriminating species of Gomphonema (see “Baffling biodiversity …”).   That there were several species in the sample which prompted the article was indisputable; that some of those species were, individually, quite variable was also clear.  The former issue I resolved, to some extent, by reference back to Hutchinson’s “Paradox of the Plankton” but the latter was harder to explain.

Part of the problem stems, I suspect, from the reliance on morphology to characterise species.  We assume that, because a group of organisms share a set of visible characteristics, then they must also share genes which determine those characteristics and that, in turn, implies a common ancestry.   Turning that assumption on its head, we assume that groups of microscopic algae that appear different to each other belong to different species.   However, a dog lover might point out that Chihuahuas and Great Danes look very different but are, in fact, the same species.   One of the challenges of those of us who study algae is deciding just how much variation in form is typical within a species, and at what point differences are such that they represent more than one species.

Gomphonema sarcophagus from Pitsford Water, Northamptonshire, showing Janus cells.  Photographs by Ingrid Jüttner.  Scale bar: 10 micrometres (= 1/100th of a millimetre).

So what should we make of the diatom valves in the image above?   The valve outlines and breadths are similar but the striae densities are so different that we might think that they belong to two separate species.   However, I recently stumbled, by chance, on a 1998 paper by Stacy McBride and Robert Edgar which discussed the topic of “Janus cells”.  Janus, you may remember, is the Roman god of time and is depicted with two faces, one looking back to the past and the looking to the future. His name has been appropriated, in this context, to describe diatoms that have frustules comprising two valves with different characteristics.   A few genera show consistent differences between the two valves – in Cocconeis and Planothidium, for example, one valve has a raphe whilst the other does not – and there are also differences in striae densities between the raphe and rapheless valves.   The term “Janus cell” is applied to diatoms where there are marked differences between the two valves but this is not a fundamental characteristic of the species or genus.   So, in the example above, we see some forms with much denser striae (11-13 in 10 mm) than others (7-8 in 10 mm).

We don’t know, from just looking at variability in populations, that this is not polymorphism within the species, in much the same way that some humans have attached ear lobes and others do not.   But, as diatom populations grow in number by repeated divisions of single cells, we can assume that most are clones of a small number of genotypes and, therefore, that the differences are due to ontogenetic variation.   What is interesting here is that this variation seems to create two distinct outcomes – coarsely or finely striated valves.  Some have suggested that such variation may be determined by differences in environmental conditions; however, the co-existence in a single population argues against this.

Gomphonema, as I have mentioned in earlier posts, is a genus that challenges taxonomists.  And, because ecologists depend upon taxonomists to give them a means of sorting diatom valves and frustules into meaningful categories, the environmental signals we get from Gomphonema species are often quite confused too.   The possibility of encountering Janus cells just throws one more curve ball into the mix.

Reference

McBride, S.A. & Edgar, B.K. (1998).   Janus cells unveiled: frustular morphometric variability in Gomphonema angustatum.   Diatom Research 13:293-310.

Round, F.E., Crawford, R.M. & Mann, D.G. (1990).  The Diatoms: Biology and Morphology of the Genera.   Cambridge University Press, Cambridge.

Life in the colonies …

Another outcome of my visit to Ennerdale Water a couple of weeks ago in July (see “Life in the Deep Zone”) was some tiny green spheres in the sample I collected from one of the small streams flowing into the lake’s north-west corner.   The stream was very short, little more than a seepage arising from a wet rush-dominated area of a field just twenty metres or so from the lake margin and, at the point which I sampled, there was a tangle of filamentous algae (Stigeoclonium, Mirsrospora and Mougeotia) as well as a distinct diatom-dominated film on exposed stones.    The colonies looked like tiny peas in my sample tray but I suspect that they were attached to rocks or aquatic vegetation before I disrupted them. Under the microscope, these turned out to be colonies of the green alga Chaetophora pisiformis, a relative of Draparnaldia and Stigeoclonium, both of which I have written about before (see “The exception that proves the rule …” and “A day out in Weardale …”.  Like those, Chaetophora has branched filaments but they differ in forming well-defined colonies that are visible to the naked eye.

The pictures below show the form of colonies very clearly.  Chaetophora colonies are firm to the touch and cannot easily be squashed under a coverslip.   I overcame this by using a cavity slide, and taking one of the smallest colonies that I could find in order to photograph it with as little damage as possible.  Note how there is a very clear edge to the colony, whereas Draparnaldia and Stigeoclonium have a mass of filaments and mucilage but no obvious border between the “colony” and the surrounding environment.  Draparnaldia sometimes forms discrete colonies (see “The exception that proves the rule …”) but these are much softer and more easily squashed onto a slide.

Top: colonies of Chaetophora pisiformis from a small stream flowing into Ennerdale Water, with a one cent coin for scale; bottom left: lower power (x40) view of a colony.  The picture frame is about two millimetres across; bottom right: medium power (x100) view of the same colony.

Viewed at higher magnifications, the branches of the filaments are clear. They tend to be clustered towards the tops of the filaments and, in this case at least, end abruptly, rather than tapering to fine hairs.  I explained in the posts mentioned above how these fine hairs are used by the algae as means of capturing the nutrients that they need.  Chaetophora can form these hairs, but it does so less often, in my experience, than Draparnaldia and Stigeoclonium.   There will be dead and decaying vegetation in the rush-dominated swamp from which the stream originates, and the enzymes that these algae produce will be able to harvest any phosphorus from organic particles that result from this decay.  That’s the theory for Stigeoclonium at least, but I suspect that the colonies of Chaetophora are also highly efficient recycling units: the filaments are embedded in a firm mucilage that is far more than an inert polysaccharide gunk.   Any phosphorus that is released from a filament will be far more likely to be hoovered up by another filament than to drift downstream whilst the phosphatase enzymes will also be on hand at the colony surface to savenge any stray nutrients from the seepage.  These tight colonial forms are, in other words, fortresses of plenty in an otherwise inhospitable landscape: well adapted to nutrient-stressed situations and, as a paucity of nutrients is the natural condition of streams, the presence of these colonies is a good sign that this stream is in good condition.

Filaments of Chaetophora pisiformis from a small stream flowing into Ennerdale Water, July 2018.  Scale bar: 20 micrometres (= 1/50th of a millimetre). 

Reference

Whitton, B.A. (1988).  Hairs in eukaryotic algae.   pp. 446-480.  In: Algae and the Aquatic Environment (edited by F.E. Round).  Biopress, Bristol.