More about measuring biomass …

The previous post showed how the proportions of green algae and diatoms changed as the total quantity of algae in the River Ehen waxed and waned over the course of a year.   The BenthoTorch, however, also measures “blue-green algae” and so let’s look at how this group changes in order to complete the picture.

Before starting, though, we need to consider one of the major flaws of the BenthoTorch: its algorithms purport to evaluate the quantities of three major groups of algae yet, in my posts about the River Ehen I have also talked about a fourth group, the red algae, or Rhodophyta (most recently in “The only way is up …”).  Having pointed a BenthoTorch at numerous stones with thick growths of Audouinella,we can report that Rhodophyta seem to be bundled in with the blue-green alga signal, which is no great surprise given the similarity in their pigments.  It is, however, one of a number of examples of the need to interpret any BenthoTorch results with your brain fully engaged, and not just to treat outputs at face value. Similar questions need to be asked of the Xanthophyta and Chrysophyta, though the latter tend not to be common in UK streams.


Relationship between the proportion of “blue-green algae” (Cyanobacteria and Rhodophyta) and the total quantity of benthic algae (expressed as chlorophyll concentration) in the River Ehen (c.) and Croasdale Beck (d.).  The blue lines show quantile regression fits at p = 0.8, 0.5 and 0.2.  

In contrast to the green algae and diatoms, the Cyanobacteria/Rhodophyta signal shows a strong negative relationship as biomass increases though, again, there is enough scatter in this relationship to make it necessary to approach this graph with caution.  I suspect, for example, that the data points on the upper right side of the data cloud represents samples rich in Audouinella, which tends to occur in winter when biomass, generally, is much greater.   On the other hand, Croasdale Beck, in particular, has a lot of encrusting Chamaesiphon fuscus colonies which are pretty much perennial (see “a bigger splash …”) but whose relative importance in the BenthoTorch output will be greatest when the other two groups of algae are sparse.   I suspect that encrusting members of this genus are favoured by conditions that do not allow a high biomass of other algae to develop, as these will reduce the amount of light that the Chamaesiphonreceives.

Thicker biofilms in the River Ehen often have some narrow Phormidium-type filaments as well as small bundles of nitrogen-fixing Calothrix, but the overall proportion is generally low relative to the mass of diatoms and green algae that predominate.    But that is not really telling us the whole story.  I finished my previous post with a graph showing how the variation in biomass increases as the biomass increases.  The heterogeneity of stream algal communities, however, cannot be captured fully at the spatial scale at which the BenthoTorch works: there is a patchiness that is apparent to the naked eye: one of our sites has distinct mats of Phormidium autumnale towards one margin, and dense Lemaneagrowths in the fastest-flowing sections, largely attached to unmovable boulders, which makes biomass measurement very difficult. I’ve also written about distinct growths of Tolypothrix and its epiphytes (see “River Ehen … again”), another alga which forms discrete colonies at a few locations. I try to collect a random sample of stones from a site but there are constraints, including accessibility, especially when the river rises above base flow.   In the River Ehen we also have to take care not to disturb any mussels whilst removing stones.

Whilst our sampling cannot really be described as “random” I do think that there is sufficient consistency in the patterns we see for the results to be meaningful. We could spend a lot more time finessing the sampling design yet for little extra scientific gain.   I prefer to think of these measurements as one part of a complex jigsaw that is slowly revealing the interactions between the constituents of the dynamic ecosystem of the River Ehen.   The important thing is to not place too much faith in any single strand of evidence, and to have enough awareness of the broader biology of the stream to read beyond the face value indications.


The only way is up …


How does an alga move upstream?   I’m curious because, I am now seeing populations of Lemanea fluviatilisabout four kilometres further upstream in the River Ehen than when I first started my regular visits in 2013.   I can explain the presence of the organism partly through changes in the hydrology of the river: a small tributary, Ben Gill, that had been diverted into the lake in Victorian times was reconnected to the river in 2014 and this introduced periodic pulses of intense energy to the river that had immediate effects on the substrate composition.  Lemanea fluviatilisis a species that thrives in the fastest-flowing sections of streams so I am quite prepared to believe that even a small shift in the hydrology of this very regulated river might make the habitat more conducive.

But that does not explain how it got there in the first place.   If the alga was occurring a few kilometres further downstream we would not have any such problems: the upstream populations would provide innocula and, if the habitat conditions changed at the downstream location, then some of those propagules might be able to establish at the downstream locations.   But what about movement in the other direction?

There has been relatively little published on this topic in recent years.  I have a review by Jørgen Kristiansen from 1996 that considers the dispersal of algae but most of the references that he cites are quite a lot older than this and I have not seen much published subsequently.   He lists our options: dispersal by water, by organisms, by air currents and by human activity.   Let’s consider each in the context of Lemaneain the River Ehen.   Lemanea, like most red algae, has a complicated life cycle with the potential for dispersal in both the haploid and diploid phases, but that is probably more detail than we need right now.  We’ll just outline the options in broad terms:

Water:the linear flow of the river means that it is almost impossible for the downstream population to provide inocula for the new upstream locations.  It may be possible for populations from further upstream in the catchment to seed the new locations.  I have not seen Lemaneain any of the streams that flow into Ennerdale Water (from which the Ehen emerges) but my knowledge of the catchment is not exhaustive.   Likelihood: very low to low.


Young shoots of Lemanea fluviatillis(bottom right) growing on a submerged boulder in the River Ehen at a location where I have not previously seen it.   These are growing alongside thick growths of diatoms (yellow-brown in colour) and patches of green filamentous algae.

Organisms:much of the older literature is concerned with the possibility of living algae or their propagules being transported in mud attached to bird’s feet or feathers and this cannot be ruled out.   There is also a recent study showing how mink may act as a vector for Didymosphenia geminata in Chile.  The Ehen also has aquatic mammals (such as otters) that could be acting as vectors for Lemanea, as well as migratory fish such as salmon and trout that could move propagules upstream.   There is also some evidence that some algae can survive passage through mammalian and invertebrate guts, and this, too, may provide a means for Lemaneato spread upstream.    Likelihood: low to medium.

Air currents / wind:quite a lot has been written about airborne dispersal of algae, with even Darwin making a contribution (see reference in Kristiansen).  The key hazard in airborne dispersal is desiccation so, in the case of Lemanea, the most likely lifecycle stages that could be dispersed in this way would be the diploid carpospores or haploid monospores. This, however, would assume that there were times during the year when the relevant life-cycle stages were exposed and, as Lemaneais a species that I usually find in the Ehen only fully-submerged, this is not very feasible.  Likelihood: low.

Human activity:there is evidence that Didymosphenia geminatacan be transported between sites attached to waders and new records often correspond with patterns of recreational use (references in Bergey & Spaulding – see below).   When we work in the Ehen we prefer to move downstream in order to minimise the risk of moving organisms on our kit, and we also clean our kit before we start.   However, a lot of people work in this part of the Ehen and it only takes one dirty wader to introduce a propagule.   Likelihood: low to medium.

We’ll almost certainly never know for sure why Lemanea fluviatilisis now thriving four kilometres further upstream than it was five years ago.  It is, however, worth bearing in mind that, given enough time, even a low probability may yield a positive result.   So none of the four hypotheses can be ruled out for sure.   Three of the possibilities are entirely natural, with one – movement by the stream itself – being constrained by the direction of flow.  Biological vectors look like a very plausible means of moving algal propagules around catchments but, for this to work, we need wildlife-friendly corridors around the river to support the animals and birds.  The upper Ehen has these, but many other rivers do not.

Actually, having a number of options all with a relatively low likelihood adds to the sense of mystery that every ecologist should have when they approach the natural world.  When cause and effect are too predictable, we tend to focus on engineering the right “solution”.  The truth, in our muddled and unpredictable world, is often that nudging several factors in the right direction will give us a more resilient outcome, even though we may have to wait longer for it to happen.


Bergey, E.A. & Spaulding, S.A. (2015). Didymosphenia: it’s more complicated.  BioScience65: 225.

Kristiansen, J. (1996).  Dispersal of freshwater algae – a review.  Hydrobiologia336: 151-157.

Leone, P.B., Cerda, J., Sala, S. & Reid, B. (2014).  Mink (Neovision vision) as a natural vector in the dispersal of the diatom Didymosphenia geminataDiatom Research29: 259-266.

Raven, J.A. (2009).  The roles of the Chantransia phase of Lemanea (Lemaneaceae, Batrachospermales, Rhodophyta) and of the ‘Mushroom’ phase of Himanthalia (Himanthaliaceae, Fucales, Phaeophyta).  Botanical Journal of Scotland46: 477-485.

Croasdale Beck in February


My latest trip to the west Cumbria coincided with the period of freakily warm weather that marked the end of February (in marked contrast to a year previously when we were in the midst of the “Beast from the East”).   It felt like spring had come early although the skeletal outlines of leafless trees were incongruous against the backdrop of blue skies and, despite feeling the warmth of the sun on our faces as we worked, the water still had a wintery chill when the time came to plunge in my arm.

There were thick growths of algae on the bed of Croasdale Beck: a quick check with my microscope later showed this to be mostly Odontidium mesodonand Gomphonema parvulumand this piqued my curiosity to see how different species responded to the fluctuations in biomass that we observe in the streams in this region. I’ve talked about this before (see “A tale of two diatoms …”), suggesting that Platessa oblongellatended to dominate when biofilms were thin whilst Odontidium mesodon preferred thicker biofilms.  That was almost two years ago and I now have more data with which to test that hypothesis, and also to see if any other common taxa had an equally strong preference for particular states.


A cobble from the bed of Croasdale Beck in February 2019 showing a brown biofilm (approx. 1.7 micrograms per square centimetre) dominated by Gomphonema parvulumand Odontidium mesodon.   The photograph at the top of the post shows Ennerdale Water photographed on the same day.

I should also be clear that, in Croasdale Beck especially, diatoms are the main algal component of the biofilm, so they are not so much responding to a particular state of the biofilm as actively contributing biomass to create that state.  The other photosynthetic organism that is obvious to the naked eye in this part of Croasdale Beck is the cyanobacterium Chamaesiphon fuscus (see “A bigger splash …”) but this forms crusts on stone surfaces rather than contributing to the superstructure of the biofilm itself. We do find other filamentous algae, but intermittently and in smaller quantities.

We’ll look at Platessa oblongellafirst, bearing in mind that this was shown to be a mixture of two species about halfway through our study (see “Small details in the big picture …”).   The graph below, therefore, does not differentiate between these two species although, from my own observations, I have no reason to believe that they behave differently.   What I have done in these graphs is to divide the biomass measurements and the percent representation of these taxa in each sample into three categories: low, middle and high.   In each case, “low” represents the bottom 25 per cent of measurements, “high” represents the top 25 per cent of measurements and “middle” represents all the rest. The left-hand graph shows biomass (as chlorophyll a concentration) as a function of the relative abundance of the diatom whilst the right-hand graph shows the opposite: the relative abundance of the diatom as a function of the biomass.  These graphs bear out what I suggested in my earlier post: that Platessa oblongella(and P. saxonica) are species whose highest relative abundances occur when the biofilm is thin.  So far, so good.


Relationship between relative abundance of Platessa oblongella (including P. saxonica) and biomass in Croasdale Beck, Cumbria.  a. shows biomass (as chlorophyll a) as a function of the relative abundance of the two species (Kruskal-Wallis test, p = 0.047) whilst b. shows the relative abundance as a function of biomass (p = 0.057).

My second prediction in my earlier post was that Odontidium mesodonpreferred moderate or thick biofilms; however, whilst there is a clear trend in the data, differences between low, middle and high values of neither biomass nor relative abundance are significant.   The explanation may lay in the strong seasonality that O. mesodondisplays, thriving in spring but less common at other times of year (see “More about Platessa oblongella and Odontidium mesodon”).  However, there are no strong seasonal patterns in biomass in Croasdale Beck, and this disjunction introduces enough noise into the relationship to render it not significant.


Relationship between relative abundance of Odontidium mesodon and biomass in Croasdale Beck, Cumbria.  a. shows biomass (as chlorophyll a) as a function of the relative abundance of O. mesodon (Kruskal-Wallis test, p = 0.568) whilst b. shows the relative abundance as a function of biomass (p = 0.060).

I then tried looking at the relationship between relative abundance and biomass for a few other common taxa but with mixed results.   None of Achnanthidium minutissimum, Gomphonema parvulum complex or Fragilaria pectinalis showed any clear relationship; however, when I looked at Fragilaria gracilis, a different pattern emerged, with a significant relationship between the quantity of biomass and the proportion of this species in the sample.  That, too, is not a great surprise as I often see clusters of Fragilaria gracilis cells growing epiphytically on filamentous algae within the biofilm.  Whilst Platessa oblongella, which sits flat on the stone surface, seems to be a species that thrives when the biofilm is thin, so Fragilaira gracilisis favoured by a more complex three-dimensional structure, where it can piggy-back on other algae to exploit the light.   I suspect, however, that in a stream such as Croasdale Beck, where the substratum is very mobile, Fragilaira gracilis will also be one of the first casualties of a scouring spate which will, in turn, open up the canopy allowing Platessa oblongella back.   Even though my results for Odontidium mesodonare not significant, I still think it plays a part in this sequence, occupying the intermediate condition when some biomass has accumulated.  It looks to me as if it also likes cooler conditions which then complicates interpretation of my results.

Indeed, I am being rather selective in the results that I have included here.  Three of the six species I investigated showed no response and one of the three that I did include showed a trend rather than a statistically-convincing effect.  I suspect that the situation will rarely be as simple as I have shown for Platessa oblongella and Fragilaira gracilis.  Nonetheless, there is enough here to make me want to scratch a little more and try to understand this topic better.


Relationship between relative abundance of Fragilaria gracilis and biomass in Croasdale Beck, Cumbria.  a. shows biomass (as chlorophyll a) as a function of the relative abundance of F.gracilis (Kruskal-Wallis test, p = 0.010) whilst b. shows the relative abundance as a function of biomass (p = 0.036).


Croasdale Beck, photographed in February 2019. 

Transitory phenomena …

Fieldwork in the River Ehen has been an unusually pleasurable experience over the past few months, even to the extent of abandoning waders altogether and wearing just a thin pair of neoprene beach shoes and shorts as I worked.   Curiously, there were few obvious signs of the prolonged period of low flow here, but that is partly due to the pumps installed by United Utilities to keep the river running whilst the lake was drawn down (see “Life in the deep zone …”).   I did, however, find some intriguing green patches on fine sediments at the margins.

Most of the bed in this part of the river consists of much coarser sediments than these which are, I suspect, silt and sand deposited on the occasions when Ben Gill (which joins the Ehen immediately below Ennerdale Water) is flowing.   Current velocity is lower at the edges of the river, allowing fine sediments to settle out and create temporary sandbanks.   One decent spate will be all that is needed, I suspect, to wash much of this downstream.  However, there has not been a period of prolonged high flow for several months and there is, as a result, a thin green mat of algae growing on the upper surface of this sediment.

Mats of Oscillatoria on fine sediments beside the River Ehen just downstream from Ennerdale Water, August 2018.   The total length of the mats in the left hand photograph is about one metre. 

I scraped up a small sample to examine under my microscope.  I was expecting to see the broad filaments of the cyanobacterium Phormidium autumnale which I often find at a site about five kilometres downstream (see “’Signal’ or ‘noise’?”) but what I saw was much narrower filaments, some of which were slowly gliding forwards and backwards.   These belong to a species of Oscillatoria, a relative of Phormidium that is common in the plankton.  A few species, however, do live on surfaces and can, as I could see in the Ehen, form mats.  I have, in fact, described a different mat-forming species of Oscillatoria (O. limosa) from the River Wear close to my home (see “More from the River Wear”) and this, too, had been favoured by a long period of warm weather and low flow.   The filaments in the River Ehen were much narrower – just a couple of micrometres wide – and had relatively long cells (two or three times longer than wide) but, in other respects, they clearly belonged to the same genus.

Microscopic views of Oscillatoria filaments from the River Ehen, August 2018.   The upper photograph was taken at medium magnification (400x) and the lower image was taken at 1000x.  The constant motion of the filaments means that it is not possible to use stacking software to obtain a crisp image.  Scale bar: 10 micrometres (= 1/100th of a millimetre). 

The motion that I could see is thought to be due to a layer of tiny fibres (“microfibrils”) which wind around the inner layer of the cell wall in tight spirals.   Movement is caused by waves that are propagated along these fibres, meaning that the filament actually rotates as it moves (though this is almost impossible to see with a light microscope).   The filaments can move either towards or away from light, depending on the intensity, at a speed of up to 11 micrometres per second (that’s about a millimetre a day or, for any petrolheads who are reading, 0.00004 kilometres per hour).  This allows the filaments can adjust their position so that they are neither in the dark nor exposed to so much light that they are likely to do damage to their photosynthetic apparatus (see “Good vibrations under the Suffolk sun” for more about this).   The result is that filaments will tend to converge, Goldilocks-style, at the point where light conditions are “just right”.  You can see some sediment particles settling on the top of the mat in one of the images and we can expect the filaments to gradually adjust their positions, incorporating these particles, over time.

Last year, I wrote about Microcoleus, a relative of Oscillatoria, which formed mats on saltmarshes and explained how this could be the first stage of colonisation of damp habitats by plants (see “How to make an ecosystem”).   We are seeing the same processes happening here, but the life expectancy of these mats is much lower.  They may well be gone next time I visit, depending on how the Cumbrian climate behaves over the next couple of weeks.   They are transitory phenomena, here today and gone tomorrow but, like the subjects of some of my other recent posts, particularly favoured by the long period of settled weather that we have enjoyed over recent weeks.


Halfen, L.F. & Castenholz, R.W. (1971).  Gliding motility in the blue-green alga Oscillatoria princeps.  Journal of Phycology 7: 133-145.

Note: you can read more about how the heatwave has affected fresh water in the Lake District in Ellie’s MacKay’s recent post on Freshwaterblog

Life in the colonies …

Another outcome of my visit to Ennerdale Water a couple of weeks ago in July (see “Life in the Deep Zone”) was some tiny green spheres in the sample I collected from one of the small streams flowing into the lake’s north-west corner.   The stream was very short, little more than a seepage arising from a wet rush-dominated area of a field just twenty metres or so from the lake margin and, at the point which I sampled, there was a tangle of filamentous algae (Stigeoclonium, Mirsrospora and Mougeotia) as well as a distinct diatom-dominated film on exposed stones.    The colonies looked like tiny peas in my sample tray but I suspect that they were attached to rocks or aquatic vegetation before I disrupted them. Under the microscope, these turned out to be colonies of the green alga Chaetophora pisiformis, a relative of Draparnaldia and Stigeoclonium, both of which I have written about before (see “The exception that proves the rule …” and “A day out in Weardale …”.  Like those, Chaetophora has branched filaments but they differ in forming well-defined colonies that are visible to the naked eye.

The pictures below show the form of colonies very clearly.  Chaetophora colonies are firm to the touch and cannot easily be squashed under a coverslip.   I overcame this by using a cavity slide, and taking one of the smallest colonies that I could find in order to photograph it with as little damage as possible.  Note how there is a very clear edge to the colony, whereas Draparnaldia and Stigeoclonium have a mass of filaments and mucilage but no obvious border between the “colony” and the surrounding environment.  Draparnaldia sometimes forms discrete colonies (see “The exception that proves the rule …”) but these are much softer and more easily squashed onto a slide.

Top: colonies of Chaetophora pisiformis from a small stream flowing into Ennerdale Water, with a one cent coin for scale; bottom left: lower power (x40) view of a colony.  The picture frame is about two millimetres across; bottom right: medium power (x100) view of the same colony.

Viewed at higher magnifications, the branches of the filaments are clear. They tend to be clustered towards the tops of the filaments and, in this case at least, end abruptly, rather than tapering to fine hairs.  I explained in the posts mentioned above how these fine hairs are used by the algae as means of capturing the nutrients that they need.  Chaetophora can form these hairs, but it does so less often, in my experience, than Draparnaldia and Stigeoclonium.   There will be dead and decaying vegetation in the rush-dominated swamp from which the stream originates, and the enzymes that these algae produce will be able to harvest any phosphorus from organic particles that result from this decay.  That’s the theory for Stigeoclonium at least, but I suspect that the colonies of Chaetophora are also highly efficient recycling units: the filaments are embedded in a firm mucilage that is far more than an inert polysaccharide gunk.   Any phosphorus that is released from a filament will be far more likely to be hoovered up by another filament than to drift downstream whilst the phosphatase enzymes will also be on hand at the colony surface to savenge any stray nutrients from the seepage.  These tight colonial forms are, in other words, fortresses of plenty in an otherwise inhospitable landscape: well adapted to nutrient-stressed situations and, as a paucity of nutrients is the natural condition of streams, the presence of these colonies is a good sign that this stream is in good condition.

Filaments of Chaetophora pisiformis from a small stream flowing into Ennerdale Water, July 2018.  Scale bar: 20 micrometres (= 1/50th of a millimetre). 


Whitton, B.A. (1988).  Hairs in eukaryotic algae.   pp. 446-480.  In: Algae and the Aquatic Environment (edited by F.E. Round).  Biopress, Bristol.

Life in the deep zone …

The view above – looking along Ennerdale Water from the western end – is one that I’ve used before in this blog.  The difference today is that there is about twenty metres of foreshore exposed.  Normally, water covers all the area in the foreground.   Not today: Ennerdale Water is one more victim of our present drought conditions.  During the winter, we often see water splashing over the weir at the outfall; today, the weir head is a metre above the lake level and flow in the River Ehen is maintained only by pumps installed by United Utilities.

When W.H. Pearsall visited Ennerdale Water in the 1920s, he considered it to be one of the most primitive of the Lake District’s lakes (see “The power of rock …”).   However, this supposedly wild lake had been tamed by a weir since the middle of the 19th century in order to provide drinking water for Whitehaven and Workington and surrounding areas.   That, in turn, has consequences for the river downstream, especially at times such as this when, unless augmented by pumps, there would be no water in the River Ehen below the outfall.   At some point in the next decade, a new water infrastructure project will pipe water to west Cumbria from Thirlmere, after which the weir can be removed and fluctuations in water level in both lake and river will be more natural.

The weir at the outfall of Ennerdale Water, with the fish pass at the far end. 

Meanwhile, however, I was able to explore areas of the lake littoral zone that would normally be hidden from me.  My notebook, for example, records my observations that this part of the lake shore has a stony bottom yet, as can be seen from the picture above, these form a belt about 20 metres wide, after which there is firm sand.   Normally, this would be close to the limit of safe wading but, today, I could walk out with just a pair of thin neoprene shoes.   Looking down, I could see a number of tufts of the alga Nitella flexilis growing in this sand.   I’ve written about this species before (see “Finding the missing link in plant evolution …”) and have seen it in the lake before, but not in this particular location. Standing with the lake water lapping against my shins I could bend down and take some photographs of these with my underwater camera that give this usually chilly location a semi-tropical feel.

It is a useful reminder to those of us who dabble in lake littoral zones and think that we understand their ecology that a lot happens beyond the depth in which we can safely wade.   Marco Cantonati and colleagues, for example, have found big changes in the composition of the algal flora of Alpine lakes when they used Scuba diving to explore the depths of their littoral zones.  No doubt, we would see similar changes if we were to try the same in the Lake District.


Cantonati, M., Scola, S., Angeli, N., Guella, G. & Frassanito, R. (2009).  Environmental controls of epilithic diatom depth-distribution in an oligotrophic lake characterized by marked water-level fluctuations.   European Journal of Phycology 44: 15-29.

Cantonati, M. & Lowe, R.L. (2014).  Lake benthic algae: toward an understanding of their ecology.  Freshwater Science 33: 475-486.


Desmid diversity …

Back in September, I wrote about a joint British Phycological Society and Quekett Microscopical Club field weekend looking at desmids in the Lake District (see “Desmid Masterclass”, “Lessons from School Knott Tarn” and “Different tarn, different desmids …”).  Dave John sent some of the samples that we collected to David Williamson, the UK’s leading expert on desmids but, at 92, too frail to join us, and he has now sent back some fine drawings illustrating the range of desmids that he encountered.

Two of the tarns (Long Moss Tarn, Kelly Hall Tarns) are already recognised as Internationally Important Plant Areas (IPAs) for desmids because of their desmid diversity and containing internationally very rare desmids (based largely on David Williamson’s records) so their diversity is not a complete surprise to us.  Nonetheless, David found a total of 129 desmid taxa in the three tarns, whilst another desmid specialist, Marien van Westen, identified almost 160 desmids in another set of samples from the same tarns.

The drawings are arranged in three plates, one for each tarn.   Desmids identified by David Williamson from the three tarns are illustrated.  The desmids have been numbered and the captions prepared by David John who is analysing the findings and comparing them with surveys dating back to the 1970s.   David Williamson has drawn the taxa at different scales to roughly balance the arrangement on the collage, and adjusted the sizes so important details are visible.   No details of the chloroplasts are given since all samples had been preserved in formalin.  A few of the desmids, particularly those that are very long, have not been included in the plates.

Desmids from Long Moss Tarn (SD 292 936), September 2017.   Long Moss Tarn is shown in the photograph at the top of this post.

Desmids from Kelly Hall Tarn (SD 289 933), September 2017.

Desmids from School Knott Tarn (SD 427 973), September 2017.


1-Actinotaenium diplosporum; 2-Actinotaenium turgidum;  3-Bambusina borreri;  4-Closterium acerosum var. borgei; 5-Closterium angustatum;  6-Closterium archerianum var. pseudocynthia;  7-Closterium archerianum; 8-Closterium attenuatum;  9-Closterium baillyanum var. alpinum; 10-Closterium baillyanum; 11-Closterium closterioides; 12-Closterium costatum; 13-Closterium dianae var. arcuatum; 14-Closterium dianae var. minus;  15-Closterium didymotocum; 16-Closterium incurvum; 17-Closterium intermedium; 18-Closterium kuetzingii;  19-Closterium lunula; 20-Closterium navicula;  21- Closterium setaceum; 22-Closterium striolatum; 23-Cosmarium amoenum; 24-Cosmarium anceps; 25-Cosmarium binum; 26-Cosmarium brebissonii; 27-Cosmarium contractum;  28-Cosmarium davidsonii; 29-Cosmarium debaryi;  30-Cosmarium depressum; 31-Cosmarium formosulum; 32-Cosmarium hostensiense; 33-Cosmarium incrassatum var. schmidlei; 34-Cosmarium margaritatum; 35-Cosmarium margaritiferum; 36-Cosmarium monomazum var. polymazum;  37-Cosmarium obtusatum;  38-Cosmarium ornatum; 39-Cosmarium ovale;  40-Cosmarium pachydermum; 41-Cosmarium pachydermum var. aethiopicum; 42-Cosmarium perforatum var. skujae; 43-Cosmarium portianum; 44-Cosmarium punctulatum;  45-Cosmarium quadratum; 46-Cosmarium quadrum; 47-Cosmarium subochthodes var. majus; 48-Cosmarium subtumidum var. groenbladii;  49-Cosmarium subundulatum; 50-Cosmarium tetragonum var. ornatum ; 51-Cosmarium tetraophthalmum; 52-Cosmarium variolatum;  53-Cosmocladium tuberculatum; 54-Desmidium aptogonum; 55-Desmidium swartzii; 56-Docidium baculum; 57-Euastrum ampullaceum; 58-Euastrum ansatum;  59-Euastrum bidentatum var. speciosum; 60-Euastrum gemmatum; 61-Euastrum luetkemulleri; 62-Euastrum oblongum; 63-Euastrum pectinatum; 64-Euastrum pulchellum; 65-Euastrum verrucosum; 66-Gonatozygon aculeatum; 67-Gonatozygon brebissonii; 68-Groenbladia undulata; 69-Haplotaenium minutum;  70-Hyalotheca dissiliens;  71- Micrasterias americana var. boldtii; 72-Micrasterias compereana; 73-Micrasterias crux-melitensis; 74-Micrasterias denticulata; 75-Micrasterias furcata; 76-Micrasterias pinnatifida;  77-Micrasterias radiosa; 78-Micrasterias rotata; 79-Micrasterias thomasiana; 80-Micrasterias truncata; 81-Netrium digitus; 82-Netrium digitus var. latum; 83-Netrium interruptum;  84-Penium exiguum; 85-Penium margaritaceum; 86-Pleurotaenium coronatum var. robustum;  87-Pleurotaenium ehrenbergii; 88-Pleurotaenium truncatum; 89-Sphaerozosma filiforme; 90-Staurastrum arachne;  91-Staurastrum arctiscon; 92-Staurastrum bieneanum; 93-Staurastrum boreale var. robustum; 94-Staurastrum cristatum; 95-Staurastrum dilatatum; 96-Staurastrum inconspicuum; 97-Staurastrum kouwetsii; 98-Staurastrum lapponicum; 99-Staurastrum maamense; 100-Staurastrum polytrichum; 101-Staurastrum productum; 102-Staurastrum quadrangulare; 103-Staurastrum striolatum; 104-Staurastrum teliferum; 105-Staurastrum tetracerum; 106-Staurodesmus convergens; 107-Staurodesmus convergens var. wollei; 108-Staurodesmus cuspidatus var. curvatus; 109-Staurodesmus megacanthus; 110- Xanthidium antilopaeum; 111-Xanthidium antilopaeum var. laeve; 112-Xanthidium antilopaeum var. polymazum; 113-Xanthidium cristatum.